书城公版H307
4815400000007

第7章

Under these circumstances, as it is admitted on all sides that races occur in Nature, how are we to know whether any apparently distinct animals are really of different physiological species, or not, seeing that the amount of morphological difference is no safe guide? Is there any test of a physiological species? The usual answer of physiologists is in the affirmative. It is said that such a test is to be found in the phenomena of hybridization--in the results of crossing races, as compared with the results of crossing species.

So far as the evidence goes at present, individuals, of what are certainly known to be mere races produced by selection, however distinct they may appear to be, not only breed freely together, but the offspring of such crossed races are only perfectly fertile with one another. Thus, the spaniel and the greyhound, the dray-horse and the Arab, the pouter and the tumbler, breed together with perfect freedom, and their mongrels, if matched with other mongrels of the same kind, are equally fertile.

On the other hand, there can be no doubt that the individuals of many natural species are either absolutely infertile if crossed with individuals of other species, or, if they give rise to hybrid offspring, the hybrids so produced are infertile when paired together.

The horse and the ass, for instance, if so crossed, give rise to the mule, and there is no certain evidence of offspring ever having been produced by a male and female mule. The unions of the rock-pigeon and the ring-pigeon appear to be equally barren of result. Here, then, says the physiologist, we have a means of distinguishing any two true species from any two varieties. If a male and a female, selected from each group, produce offspring, and that offspring is fertile with others produced in the same way, the groups are races and not species. If, on the other hand, no result ensues, or if the offspring are infertile with others produced in the same way, they are true physiological species. The test would be an admirable one, if, in the first place, it were always practicable to apply it, and if, in the second, it always yielded results susceptible of a definite interpretation.

Unfortunately, in the great majority of cases, this touchstone for species is wholly inapplicable.

The constitution of many wild animals is so altered by confinement that they will not breed even with their own females, so that the negative results obtained from crosses are of no value; and the antipathy of wild animals of the same species for one another, or even of wild and tame members of the same species, is ordinarily so great, that it is hopeless to look for such unions in Nature. The hermaphrodism of most plants, the difficulty in the way of insuring the absence of their own, or the proper working of other pollen, are obstacles of no less magnitude in applying the test to them. And, in both animals and plants, is superadded the further difficulty, that experiments must be continued over a long time for the purpose of ascertaining the fertility of the mongrel or hybrid progeny, as well as of the first crosses from which they spring.

Not only do these great practical difficulties lie in the way of applying the hybridization test, but even when this oracle can be questioned, its replies are sometimes as doubtful as those of Delphi.

For example, cases are cited by Mr. Darwin, of plants which are more fertile with the pollen of another species than with their own; and there are others, such as certain 'fuci', whose male element will fertilize the ovule of a plant of distinct species, while the males of the latter species are ineffective with the females of the first. So that, in the last-named instance, a physiologist, who should cross the two species in one way, would decide that they were true species; while another, who should cross them in the reverse way, would, with equal justice, according to the rule, pronounce them to be mere races.

Several plants, which there is great reason to believe are mere varieties, are almost sterile when crossed; while both animals and plants, which have always been regarded by naturalists as of distinct species, turn out, when the test is applied, to be perfectly fertile.

Again, the sterility or fertility of crosses seems to bear no relation to the structural resemblances or differences of the members of any two groups.

Mr. Darwin has discussed this question with singular ability and circumspection, and his conclusions are summed up as follows, at page 276 of his work:--"First crosses between forms sufficiently distinct to be ranked as species, and their hybrids, are very generally, but not universally, sterile. The sterility is of all degrees, and is often so slight that the two most careful experimentalists who have ever lived have come to diametrically opposite conclusions in ranking forms by this test. The sterility is innately variable in individuals of the same species, and is eminently susceptible of favourable and unfavourable conditions. The degree of sterility does not strictly follow systematic affinity, but is governed by several curious and complex laws. It is generally different and sometimes widely different, in reciprocal crosses between the same two species. It is not always equal in degree in a first cross, and in the hybrid produced from this cross.