书城童书昆虫记(超值金版)
1346200000058

第58章 蛛网中的几何学

我的花园里生活着好几种蜘蛛,有丝光蛛,也有条纹蛛。我在观察它们的网时发现了一个很有趣的现象:尽管不同蜘蛛的网辐条数各不相同,但是它们有一个共同的特点。这个特点也适用于任何一个蜘蛛网。那就是辐条排列均匀,相邻辐条所成的角大小一致。这就导致每个网都被分成了若干等份儿。同一种蜘蛛织的网辐条数相同,被分成的份数也相同。

蜘蛛织网的方式我们上面已经讲过了。它杂乱无章地朝各个方向跳跃,却制造出了一个非常规则的网。挂在半空中,就像是教堂墙上的彩绘玻璃一样美丽。这样规则的网,即使是让设计家用圆规、尺子在纸上画,也画不出来。

蛛网上有很多同心圆,它们被伸向各个方向的辐条切割成了一个个并挨着的扇形。每个扇形中从顶角到外沿都有许多弦,也就是连接两条辐条的细线。这些弦互相平行,越靠近圆心,弦之间的距离越小。每条弦与扇形的两条边相交会成四个角,弦上面两个,弦下面两个。上面的两个角都是钝角,下面的两个都是锐角。同一个扇形里面,不同的弦与两条边相交得到的所有的钝角度数相同,锐角也是一样,因为这些弦都是平行线。

不仅如此,这些钝角和锐角的度数,与其他扇形中钝角和锐角的度数也是一样的。这就说明,每条丝线与相邻两根辐条相交所得的钝角和锐角,与其他丝线与相邻辐条相交所得的钝角和锐角是相同的。

数学界有一种非常有名的曲线叫“对数螺线”。这种螺线永无止尽,看似越绕越小,但是永远不会绕到尽头。就像圆周率一样,小数点后面位数越多越精确,但是永远得不到一个准确的数字。这种没有尽头的概念,比如圆周率、对数螺线,一般只会出现在科学家们的脑子里,现实中用不到。但是小蜘蛛竟然也懂得这些东西,让人不得不佩服。它们的蛛网便是依照对数螺线来绕的,并且非常精确。

很多数学家、科学家都对对数螺线着迷,还有的人一生致力于研究这些东西。有一位数学教授发现了对数螺线的某个定理,人们在他死后将这条定理刻在他的墓碑上。可见这是一件多么让人感到光荣的事情。

人们实在是不明白这些概念、定理之类的东西对日常生活有什么用。难道它们就只是一个客观存在吗?难道它们对人们的生活就没有一点儿影响吗?

事实是恰恰相反,对数螺线在我们的生活中无处不见。除了蜘蛛以外,还有很多动物的巢穴都是遵循对数螺线建的,蜗牛便是其中最早的一个。大家观察一下蜗牛壳上的纹路,难道不正是一个对数螺线吗?它们早在亿万年前便懂得了这个定律。

在其他壳类动物的化石中,也经常发现对数螺线。现在,南海中还生活着一种鹦鹉螺,它的祖先能追溯到太古时代。亿万年过去了,它们的外貌没有发生一点儿变化。它们的壳依然是依照对数螺线设计的,还是祖先那副模样。不用说遥远的南海,就是我们家附近水池中很普通的螺,它的壳都符合对数螺线。它们真的是非常普遍,无处不在。

中生代化石菊石上的对数螺线这些高深莫测的数学定律被它们随意地运用,是谁传授给它们这些知识的呢?有一种说法挺有趣。说蜗牛的祖先是一种蠕虫,无意中发现揪住自己的尾巴把自己绞成螺旋形是一件很舒服的事情。于是它便经常一边做着这个动作,一边晒太阳。时间长了它便变成了这副模样,身体变成了螺旋形。

那蜘蛛呢?它的祖先可不是蠕虫,也没人教授它们,它们为何能将这种螺线娴熟地应用于自己网中呢?蜘蛛的网只需要一个小时就能造好,但是看上去比需要几年时间才能造好的蜗牛的壳还要精致。是谁赐予它这种天赋呢?我们只能说是神圣的大自然。这种天赋就像一些植物的花瓣会很规则地排列一样,是不需要人去教,也没有为什么的。有的时候,在我们眼中高明的东西是它们唯一的技巧。除此之外,它们不会运用其他方法。好比蜘蛛,我们觉得它会运用深奥的对数螺线来织网很了不起。事实上,你要是让它们织个简单的三角形或者四方形,它们反而会举手无措。这就是本能,这就是神奇的大自然。

几何学无处不在,我们在蜘蛛织的网中发现了它;我们在蜗牛的壳上发现了它;我们在铁杉果的鳞片中发现了它;当我们仰望星空,我们还会在行星运行的轨道上发现它。小到原子大到宇宙,这门无处不在、无时不在的学科,仿佛统治了世间的一切。

大自然告诉我们,宇宙中有一位万能神。它同时还是一位几何学家,宇宙间的一切东西都已经被它测量过,并制定出了相关的规则。这样一来,许多搞不清楚的问题便会解决。那种说蠕虫变成蜗牛,然后有了螺旋贝壳的说法,听起来有些差强人意。倒不如说是万能的神赐予它的本能,让人听起来更恰当。