狄拉克力图调和量子力学与狭义相对论。他认为——我们现在知道这是错误的——量子理论需要一类被数学家称之为一阶方程的特别简单的方程。不必介意他为什么会这样想,或者准确地说一阶意味着什么;他想要的是在一定程度上非常精确的、有可能最简单的一类方程。这就产生了压力,因为找到一个既在这种意义下简单又与狭义相对论要求相容的方程是不容易的。为构造这样一个方程,狄拉克不得不放宽讨论的措辞。他发现采用单个的一阶方程不能达到他的目的——他需要一个复杂关联着的四个方程的系统,实际上“我们所指的”狄拉克方程正是这样的一个系统。
两个方程是最受欢迎的。而四个方程一开始就是一个大问题。
首先,看看好的一面。
尽管玻尔理论对原子光谱给出了一个不错的粗糙的解释,但仍存在着很多细节上的偏离。其中一些偏离与能够占据每一条轨道的电子数目相关,另一些则涉及原子对磁场的响应,显示于原子的谱线移动。通过对实验证据的仔细分析,沃尔夫冈·泡利证明了,只有严格限制占据任意给定轨道的电子数目,玻尔模型才能描写复杂原子,尽管只是粗糙的描述。这就是著名的泡利不相容原理的起源。今天我们知道这个原理的形式是“只有一个电子可以占据一个给定状态。”但泡利的原始提议没有这么简洁;它有一些使人烦恼的难懂的文字。可以占据一个给定玻尔轨道的电子数不是一个,而是两个。泡利晦涩难懂地提到一种“经典上不可描述的两重性”,但——不用说——没有给出任何理由。
1925年,两个荷兰大学生塞缪尔·哥德斯密特和乔治·乌仑贝克提出了一种磁响应问题的可能解释。他们展示,假如电子确实是个微小的磁体,则偏离就会消失。他们模型的成功要求所有电子必须具有他们计算出来的相同的磁性强度。他们接着建议了一个电子磁性的机制。电子当然是带电荷的粒子。做圆周运动的电荷产生了磁场。所以如果电子由于某些原因永远绕自身的轴旋转,它们的磁性就可能得到解释。这种电子内禀自旋还会有一个额外的好处。如果旋转速度是量子力学所允许的最小值,则泡利的“两重性”就可以解释了。自旋的大小不能随意变化,只有方向向上或向下方的选择。许多知名的物理学家都对哥德斯密特和乌仑贝克的观点持怀疑态度。泡利本人也试图劝阻他们不要发表他们的工作。一则,他们的模型似乎要求电子以极高的速度旋转,在电子表面,速度可能超过光速。再则,他们也没有给出是什么东西把电子维系在一起。如果它是电荷的延展分布,而且所有的电荷都同号,则它将会飞散开——而靠引入离心力,旋转只会使问题更糟。最后,在他们对电子磁性强度和自旋大小的要求之间存在着定量上的不匹配。这两个量的比率由一个称为回转磁比,记为g的因子所决定。经典力学预言g=1,然而为了拟合数据,哥德斯密特和乌仑贝克假定g=2。除去这些十分合理的异议,他们模型的结果与实验观测一致的记录继续顽强地保持着!
进入到狄拉克的理论。在低速情况下,他的方程组有这样的一类解,在方程的四个函数中,只有其中的两个对方程的解有可观的贡献。这是一种不同的两重性。在这里,它是由于落实基本原理而自动出现的,并且确定无疑不是必须特别引入的。更奇妙的是,不需要做进一步的假设,狄拉克就可以用他的方程算出电子的磁性,得到g=2。狄拉克写于1928年的杰作没有一个废字。在展示这个结果时,他简单地说道“磁矩正是在自旋电子模型中所假设的”。几页之后,他推演出进一步的必然结果,并简明地总结道“这样在一级近似下,目前理论给出的能级与C.G.达尔文所得到的能级相同,它们与实验是一致的。”他的这些结果有着强烈的说服力,用不着夸大。从那以后,就离不开狄拉克方程了。无论产生什么样的困难——有些困难挺大、挺明显——它们都将是争斗的场合而不是丢弃的机会。这种璀璨宝石般的深刻见解将是无价之宝。
正如我所提到的,尽管他善于思维的出发点非常与众不同和更加抽象,狄拉克以哥德斯密特、乌仑贝克以及他们模型的实验成果开始了他的论文。只有在第二段,他确实显露他的才能。他所讲的完全切合我上面所强调的主题。
“为什么大自然为电子选择这样一个特殊的模型而不满足于点电荷,这个问题依然存在。人们想要找出先前将量子力学用于点电荷的方法中的一些不完备性,当这些不完备性被移除后,整个二重性现象将成为不需要任意假设的必然结果”。
因此,狄拉克本身不是在提供一个新的电子模型。恰恰相反,他是在定义一种新的不可约的物质性质,它是事物天生固有的,特别是在相对论和量子力学自洽地起作用时,甚至在无结构点粒子这种最简单的可能情况下,这种特性也能出现。电子恰好是物质的这种最简单形式的具体表现。狄拉克保留了哥德斯密特和乌仑贝克“自旋”中的一些有价值的性质,特别是它的固定大小和它的磁性行为,它们有助于描述已观测的事实,但却是在深刻得多的基础上。他们模型的随意性和令人不满意的特征都被摆脱了。
我们正在寻找一个箭头,它将是物质基本组元的一个必要和不可分割的部分,比如光子的极化。情况就是这样!
电子的自旋可推演出许多实用的结果。它是铁磁性的起因,并使通电线圈中心处的磁场增强,它构成现代动力技术(电动机和发电机)的核心。通过操控电子自旋,我们可以在非常小的体积内贮存并读取大量信息(磁带、磁盘驱动)。甚至小得多的和更不易使用的原子核自旋也在现代技术中起着很大的作用。用无线电波或磁场操控这样的自旋,并感知它们的响应,是医学上非常有用的磁共振成像(MRI)的基础。如果没有这种只能通过最基础的认识才能带来的对于物质的精妙控制,这种应用将是不可想象的(确实如此!)。
通常的自旋,特别是狄拉克对磁矩的预言,在基础物理后续的发展中也有着巨大影响。波利卡普·库什和他的合作者在20世纪40年代发现了对狄拉克g=2的结果的微小偏离。它们提供了一些最早的虚粒子效应的定量证据,这是量子场论的一个深奥而且典型的特征。对质子和中子来说,与g=2的明显偏离早在20世纪30年代就被观测到了。这是一个早期的迹象,它暗示:质子和中子不是与电子有着相同意义的基本的粒子。但是,我正在超前于我们的故事了……。