书城现实肥仔马飞传
20051900000224

第224章 看到老师发的35岁大龄程序员遭企业辞退状况的我开始难以遏制地悲观

2020年8月14日,周五。

今天的梦还不错,进入的轮回世界是一个轻小说或者有二次元风的世界,我作为主角的朋友看主角跟几个女孩子的互动。女孩子没看多少,我和主角倒是互动不少。我对主角和女生的互动心里跟明镜似的,不过没打扰,为什么我当男二这么尽责?主要主角也不让我接触女生们。还有就是主角跟我互动老是像个娘们儿一样各种玩闹打我。最后的情节是我们丢瓶子扔进楼下的垃圾桶,我没扔进去但相差无几,主角则偏太远了,扔的太近了,我就嘲笑主角力气小。然后醒了。

所以回过神来主角其实是女主?是女的?淦。我他喵完全像个傻子一样把她当兄弟,只是挺帅气的兄弟。那……

要是还有机会通过梦境进入这个轮回世界一定要和她好好互动互动。打我好多下我都记着的。不过为什么住在一起我啥也没发现呢?大概就是因为片段吧。

……

午餐青椒肉丝、麻辣鱼块、空心菜。

……

我日常受群里马涛压迫。

……

好,来看高数第三章微分中值定理与导数的应用。

第二章研究了导数、微分。

从第三章题目可以看出有两个内容,一个是微分中值定理,一个是导数的应用。这些大章就喜欢两个东西搞成一个题目,这个有点意思。

来看第一节:

3.1 微分中值定理

首先来看【引导】。

1.极值点。

……

嘟嘟嘟

去心邻域。极小点、极小值。极大点,极大值。

……

2.函数在一个点的导数有哪些情况?

>0,<0,=0,不存在。

四种情况。

如果f'(a)>0,又有极限保号性,在去心邻域也>0。通过左右邻域分析可以发现

lim(x→a){[f(x)-f(a)]/(x-a)}>0.

{f(x)<f(a),x∈(a-δ)}

{f(x)>f(a),x∈(a+δ)}

f'(a)>0推出左小右大。(x=a不是极值点)

同理

f'(a)<0推出左大右小。(x=a不是极值点)

【结论】

①f(x)在x=a取极值,推出,f'(a)=0或f'(a)不存在.反之不对。

②f(x)在x=a取极值且可导,推出,f'(a)=0.反之不对。

【反例1】y=x3,y'=3x2,y'(0)=0.

但x=0不是y=x3的极值点。(左低右高)

【反例2】y=f(x)={x,(x小于0);2x,(x≥0)}

f'?(0)=lim(x→0?){[f(x)-f(0)]/(x-0)}=1,

f'?(0)=lim(x→0?){[f(x)-f(0)]/(x-0)}=2,

∵f'?(0)≠f'?(0),

∴f'(0)不存在,但x=0不是极值点。

【开始正式动手】

【引】【连续和可导的区别】

……

尖尖交不可导,可导是光滑的。

……

一、Rolle中值定理【罗尔定理】

Th1,若

①f(x)∈C[a,b],

②f(x)在(a,b)内可导,

③f(a)=f(b).

则至少?一点ξ∈(a,b),使f'(ξ)=0.

【罗尔定理】

【条件】【闭区间连续】【开区间可导】【左右两个端点函数值相等】

【结论】【则开区间至少一个点的导数为0】

【注意】【开闭区间一定不能含糊,零点定理开区间,介值定理闭区间,罗尔定理开区间】

【几何意义】【在区间里面至少有一点切线水平】

【罗尔定理】【证明】

f(x)C[a,b],推出,f(x)在[a,b]上取到最小值m和最大值M,

①m=M,

则f(x)≡C?.

?ξ∈(a,b),有f'(ξ)=0;

②m<M,

∵f(a)=f(b),

∴if f(a)=m,则f(b)=m,

推出M在(a,b)内取到;

if f(a)=M,则f(b)=M,

推出m在(a,b)内取到;

∴m,M至少一个在在(a,b)内取到;

【这里条件是m与M是不同的值,而左右端点是同一个值,所以m,M至少有一个在中间取到】

不妨设?ξ∈(a,b),使f(ξ)=m,

推出f'(ξ)=0或f'(ξ)不存在,

∵f(x)在(a,b)内可导,

∴f'(ξ)=0

【应用】

【例1】f(x)∈C[0,2],(0,2)内可导,f(0)=-1,f(1)=2,f(2)=-2.求证?ξ∈(0,2),使f'(ξ)=0.

证明:∵f(0)f(1)<0,【零点定理】

∴?C?∈(0,1),使f(C?)=0;

又∵f(1)f(2)<0,

∴?C?∈(1,2),使f(C?)=0;

∵f(x)∈C[C?,C?],f(x)在(C?,C?)内可导,

又∵f(C?)=f(C?)=0,

∴?ξ∈(C?,C?)?(0,2),使f'(ξ)=0.

【例2】f(x)∈C[0,2],(0,2)内可导,f(0)=1,f(1)+2f(2)=3.求证?ξ∈(0,2),使f'(ξ)=0.

证明:

1o,∵f(x)∈C[1,2],

∴f(x)在[1,2]上取到m和M.

3m≤f(1)+2f(2)≤3M,f(1)+2f(2)=3,

∴m≤1≤M

∴?C∈[1,2],使f(C)=1

2o,∵f(0)=f(C)=1

∴?ξ∈(0,C)?(0,2),使f'(ξ)=0.

……

吃了些零食喝了些水,站起来走了走。

……

【罗尔定理的致命弱点就是第三个条件太苛刻了,所以我们看一个更加广泛的拉格朗日】

二、Lagrange中值定理【拉格朗日中值定理】

Th2.若①f(x)∈C[a,b],

②f(x)在(a,b)内可导,

则至少?一点ξ∈(a,b),使

f'(ξ)=[f(b)-f(a)]/(b-a).

【证明】

【分析】L:y=f(x)

Lab:y-f(a)={[f(b)-f(a)]/(b-a)}(x-a)

即:Lab:y=f(a)+{[f(b)-f(a)]/(b-a)}(x-a)

【证明】

令φ(x)=曲-直=f(x)-f(a)-{[f(b)-f(a)]/(b-a)}(x-a)

φ(x)∈C[a,b],φ(x)在(a,b)内可导.

且φ(a)=φ(b)=0,

根据罗尔定理,

?ξ∈(a,b),使φ'(ξ)=0.

而φ'(x)=f'(x)-{[f(b)-f(a)]/(b-a)}

∴f'(ξ)=[f(b)-f(a)]/(b-a)

【真漂亮】

【注解】

①if f(a)=f(b),则L→R.

②等价形式f'(ξ)=[f(b)-f(a)]/(b-a)等价于

f(b)-f(a)=f'(ξ)(b-a)等价于

f(b)-f(a)=f'[a+(b-a)θ](b-a),(0<θ<1)

【例1】f(x)∈C[a,b],(a,b)内可导,f(a)=0,f(b)=0,a<c<b且|f'(x)|≤M.求证

|f(c)|≤M(b-a)/2.

证明:

1o,

f(c)-f(a)=f'(ξ?)(c-a),(a<ξ?<c).

f(b)-f(c)=f'(ξ?)(b-c),(c<ξ?<b).

2o,

∵f(a)=0,f(b)=0.

∴f(c)=f'(ξ?)(c-a),-f(c)=f'(ξ?)(b-c)

|f(c)|=|f'(ξ?)|(c-a)≤M(c-a),

|f(c)|=|f'(ξ?)|(b-c)≤M(b-c),

推出

2|f(c)|≤M(b-a)

推出

|f(c)|≤M(b-a)/2.

【漂亮】

……

学习的课间休息时间我会喝口水上个厕所听听歌。一般放的歌就是《sold out》。稍有激励感。

……

【方法】【对于有三个点的证明,可以用两次拉格朗日】

【例2】a<b,证arctanb-arctana≤b-a.

【方法】【对于形式是f(b)-f(a),也可以用拉格朗日】

证明:令f(x)=arctanx. f'(x)=1/(1+x2)

arctanb-arctana

=f(b)-f(a)

=f'(ξ)(b-a),(a<ξ<b)

=[1/(1+ξ2)](b-a)

∵1/(1+ξ2)≤1

∴arctanb-arctana=[1/(1+ξ2)](b-a)≤b-a

【推论】若f(x)∈C[a,b],f(x)在(a,b)内可导,且f'(x)≡0,

则f(x)≡C?.

【证明】略,懒得写。

三、柯西中值定理【Cauchy】

Th3.若①f(x)、g(x)∈C[a,b],

②f(x)、g(x)在(a,b)内可导,

③g'(x)≠0,(a<x<b).

则?ξ∈(a,b),

使[f(b)-f(a)]/[g(b)-g(a)]=f'(ξ)/g'(ξ).

【注解】

①g'(x)≠0,(a<x<b)推出g'(ξ)≠0,[g(b)-g(a)]≠0.【用罗尔定理反证】

②若g(x)=x,则Cauchy→Lagrange

③L拉格朗日辅助函数:φ(x)=曲-直=f(x)-f(a)-{[f(b)-f(a)]/(b-a)}(x-a).

C柯西辅助函数:φ(x)=f(x)-f(a)-{[f(b)-f(a)]/g(b)-g(a)}(g(x)-g(a)).

【证明】

令φ(x)=f(x)-f(a)-{[f(b)-f(a)]/g(b)-g(a)}(g(x)-g(a)).

φ(x)∈C[a,b],φ(x)在(a,b)内可导,

φ(a)=0,φ(b)=0,

∵φ(a)=φ(b)=0,

∴根据罗尔定理

?ξ∈(a,b),使φ'(ξ)=0.

而φ(x)=f'(x)-{[f(b)-f(a)]/g(b)-g(a)}g'(x)

f'(ξ)-{[f(b)-f(a)]/g(b)-g(a)}g'(ξ)=0

∵g'(ξ)≠0,

∴[f(b)-f(a)]/[g(b)-g(a)]=f'(ξ)/g'(ξ).

【例1】f(x)∈C[a,b],(a,b)内可导,(a>0),证:?ξ∈(a,b),使f(b)-f(a)=ξf'(ξ)·ln(b/a).

【分析】要证f(b)-f(a)=ξf'(ξ)·ln(b/a),

即证[f(b)-f(a)]/(lnb-lna)=ξf'(ξ).

【lnab=lna+lnb,lna/b=lna-lnb】

证明:令g(x)=lnx,g'(x)=1/x≠0,(a<x<b),

由Cauchy,?ξ∈(a,b),使

[f(b)-f(a)]/[g(b)-g(a)]=f'(ξ)/g'(ξ)

推出

[f(b)-f(a)]/[lnb-lna]=f'(ξ)/(1/ξ)=ξf'(ξ)

即f(b)-f(a)=ξf'(ξ)·ln(b/a).

好的休息一下,一会儿再来看看三个中值定理学完了之后的例题。