传统的计算机在进行繁琐、复杂的数值运算时,例如,计算圆周率π,就显得十分有能耐,比人高强;然而,面对人类认为比较容易的有关识别、判断方面的问题时,就显得笨手笨脚,力不从心。
为了解决这个问题,科学家们一心想发明神经计算机,或叫神经元网络计算机。
神经网络计算机的工作原理类似人脑。人脑由100亿~150亿个神经元组成,而每个神经元又和数千到数万个神经元相连接。神经网络计算机正是利用与人脑非常相似的神经网络进行信息处理的。
神经网络计算机有着许多特点:
第一,有着极强的自学能力。人们利用神经网络计算机的自学特点,可以方便地“教”会它认读自然语言文字。
第二,神经元网络计算机的“智能”好像是自发产生的,不是严格设计出来的,这是各个神经元所做的简单事情集合起来的结果。这一点同人的大脑的工作原理极相似。
第三,神经元网络计算机的资料不是贮存在存储器中,而是贮存在神经元之间的网络中。这就是说,即使个别神经网络断裂、破坏,也并不影响整体的运算能力,即它具有重建资料的能力。
现在,人工神经网络技术的研究,已在许多部门获得了实际应用。例如,信息识别、系统控制、检测与监测智能化等。
可以预计,在21世纪,人工神经网络的研究将会有新的突破。虽然用无生命的元器件实现人脑的所有功能是不可能的,但在某些特定的智能方面,接近或达到人脑水平的神经网络计算机将会十分普遍,届时,神经网络计算机将渗透到人类生活的各个领域。
神经计算机是按照一种仿效人脑的神经网络模型工作的。由于这种模型能通过电路予以实现,因此人们不仅可以通过这一模型了解人的神经细胞是怎样工作的,而且还能把它制成集成电路的芯片,使计算机仿效神经系统工作。于是,便出现了利用神经网络工作原理的神经计算机。
神经计算机不仅能够进行并行处理,而且还具有以下两种能力:第一,具有联想能力,例如见到红的、圆的、有芬香味的东西,便会联想起这是苹果。第二,具有自我组织能力,神经计算机通过多次处理同类问题,能够把各神经元连接成最适于处理该问题的网络,通过做同类工作而有所改进便是具有学习功能。
最能发挥神经计算机长处的工作有图像识别、声音识别、运动控制等。
由于神经计算机采用并行处理方式,很适合用光计算机来实现。今后,光计算机得到实用时,光神经计算机将会有更诱人的前景。