书城科普飞向月球(神秘的太空世界丛书)
2989400000017

第17章 开发月球的设想(3)

但外星球的恶劣条件,并不能打消人类的雄心壮志。美国、俄罗斯等航天大国都在进行实验,研究如何在无水无气的外星创造人类生活的条件。其中名气最大的实验是美国的“生物圈2”号计划。科学家为什么把他们的实验叫“生物圈2”号呢?原因是他们把人类生息的地球环境叫“生物圈1”号,而他们的实验就是要造出第二个地球环境。

美国从1984年起花费了近2亿美元,在亚利桑那州建造了这个几乎完全密封的实验基地。这是一座占地13万平方米的钢架结构的玻璃建筑,远远望去像一个巨大的温室。在这密封的建筑里有碧绿的麦田、地毯似的绿草地、碧波荡漾的鱼塘,还有袖珍的“海洋”,有各种家畜和家禽,也有几排供人居住的房子。

“生物圈2”号

“生物圈2”号实际上就是“大气圈2”号。科学家想一个人在小环境里造出人工大气,在那里有限的氧气和水分可以永远循环使用。要达到这个目的,就不能不借助于生态系统。以氧气为例,人要吸收氧气和呼出二氧化碳;植物的光合作用却正好相反,需要吸收二氧化碳和放出氧气。如果使二者达到平衡,人和植物就都能健康生活。当然植物还可供给人类食物,人类又能供给植物肥料,这样,又能达到各自的营养物质的平衡。在这个小大气中,人类呼吸和植物蒸腾都能放出水汽,人的排泄物也有许多水分,这些水分收集和净化后也能重复使用。

但是,人造大气毕竟比不上地球真大气。因为在大气圈里各种物质收支即使有波动,也能互相调剂,最终仍然能达到平衡。但在“生物圈2”号里,则没有这种弹性,一切要计算得十分精确。还是以氧气为例,如果氧气的吸收略多于氧气的放出,要不了多久,里面的人类和其他生物就会感觉缺氧,如不及时调剂,情况就会变得十分严重。而如果相反,吸收略小于放出,那么不要多久,就会出现氧气太多、二氧化碳不足的情况,植物因而无法进行光合作用,也就无法健康生长。

而正是对空气成分的控制的失误,导致了“生物圈2”号实验的失败。这个实验进行了1年多之后,土壤中的碳与氧气反应生成二氧化碳,部分二氧化碳与建筑材料中的钙发生反应,生成碳酸钙,结果,密封的建筑内的氧气含量从21%下降到14%。另外,建筑内的植物因大气成分失调而产量下降,养不活建筑内的实验员与牧畜,所以只好提前结束实验。更加令人意外的是,“生物圈2”号运行3年后,其中的二氧化碳猛增到79%,足以影响人体生理的机能,其中的原因目前尚未查清。

1996年1月1日,哥伦比亚大学接管了“生物圈2”号,模拟出一个类似地球的、可供人类生存的生态环境的研究仍在继续。

居住舱的各种构想

月球基地居住舱,像地球上的房屋一样是人生活居住的地方,由于月球的特殊环境,它的建造不仅非常重要而且复杂。随着月球基地规模不断发展和扩大,航天员人数越来越多,居住舱的建设任务也越来越重。科学家们提出了各式各样的建设月球基地居住舱的构想。

预制舱

在地球上预先将居住舱制造好,然后用火箭和登月飞船发射到月面。

洞穴和溶洞式居住舱

月球溶洞是火山活动的结果,在溶洞中建造居住舱,能有效防止宇宙辐射的危害。在月面挖洞穴建居住舱,也能有效防止宇宙辐射的危害。

掩埋式居住舱

在月面上开凿一条隧道,在隧道内建设居住舱。当在月球基地附近找不到溶洞的情况下,可以采取这种方法。

混凝土居住舱

建设居住舱的混凝土,是在月面利用月球岩石生产的。用混凝土建设居住舱的最大好处,就是坚固耐用。

复合材料居住舱

可以在月面直接生产玻璃纤维增强复合材料,用以制造月球基地居住舱。

金属居住舱

从月球矿石中提炼出铝、铁和钛等金属,然后制成建筑材料,再用这些材料建造居住舱。

充气式大圆球居住舱

1990年,美国提出了一个大型月球基地设计方案,月球基地的居住舱是一个直径16米的大圆球,可供12名航天员在里面生活和工作。充气式大圆球居住舱示意图居住舱总容积为2145立方米,可供使用的面积为742平方米。

整个居住舱是一个充气结构,舱壁分2层,内层是一种多层不透气的气囊结构,气囊内可以充气。外层用高强度材料制成,并涂有防热层。居住舱用1米厚的月壤覆盖,作为防辐射屏蔽层。整个舱壁结构和防辐射屏蔽层由12根柱子支撑。居住舱从下到上分为5层:最底层安装环境控制和生命保障系统,一部分作为月球基地的储藏室;第二层为基地实验区;第三层为基地控制区,与气闸舱相通;第四层是航天员工作区;第五层是最上层,为航天员生活区。在居住舱的外边,还有一个货物进出站,由加压舱与居住舱相通,是仪器设备进出居住舱的通道。

日本科学家的奇妙想法

日本科学家打算在月球表面的月壤层上挖一条深约5米的沟,沟内放入一个直径3米的圆筒形加热器,然后在加热器上面盖上厚约2米的月壤。当加热器把月壤加热到1200摄氏度时,月壤就会熔化成玻璃。移开加热器,再进行类似作业,月壤熔化形成的玻璃冷却后,会固结成一个坚固的外壳,壳底留下直径3米的管状空间,也就成了建造月球城的场所。无论是哪一种类型的居住舱,舱内都必须具备环境控制与生命保障系统。

创造人在月球上的生存条件

氧气、水、食物和循环生态系统是人类在月球生存的基本要素。

再生式生命保障系统示意图在月球基地要营造一个像地球上一样的生存环境,在这个环境里,有与地球上一样的大气压力,有饮用水,有可供呼吸的空气,还有适宜的温度、湿度等人类生存所需要的基本元素。月球基地上使用的生命保障系统,也随基地发展阶段的不同而不同。初期基地的生命保障系统是非再生式的,基地消耗的氧气、水和食物,要依靠地球的补充供应。此后建造的月球基地,生命保障系统是再生式的,即月球基地的氧气、水或食物,都要靠密闭循环处理和绿色植物的光合作用来就地解决。

呼吸与饮用水

“阿波罗”号取回的月海玄武岩虽然月球表面没有水又没有空气,但是月球的岩石里含有很多氧,于是科学家们提出了用月球岩石制造淡水和氧气的设想。

美国科学家对“阿波罗”飞船取回的月球样品进行了相关研究之后。提出利用月海玄武岩制取氧的工艺方法。这种方法利用太阳能提供热源,在800摄氏度的高温下,先用氢还原月海玄武岩中的钛铁矿获得水,解决了水的问题以后,再通过电解水提取氧气。

月球氧气生产设备据估计,生产1000千克水,大约需要10000千克的钛铁矿。如果开采深度按40厘米计算,相当于开采220平方米的月海区。

最初用作还原剂的氢可从地球上运来,但生产开始后电解水获得的氢可循环使用。

另据计算,一年只需要生产1吨氧气,即可维持月球上10人一年的生存的需要。

还有一些科学家提出另外一种制取氧气的方法。他们设想用甲烷和月球岩石中的硅酸镁在高温下发生反应,生产一氧化碳和氢。然后在温度较低的第二个反应器中,用一氧化碳与更多的氢发生反应,还原成甲烷和水。最后通过电解水制取氧气和氢气;还原的甲烷可以循环使用。用这种方法制取氧气,从理论上说只消耗月壤中的硅酸镁,不消耗参加反应的其他物质,所以几乎有用不完的制氧原料。

根据对“克莱门汀”号和月球勘探者月球探测器发回的探测结果分析,月球上可能存在水冰,并且存储于月球两极撞击坑的永久阴影区内,一些科学家估计月球上水冰的总资源量约66亿吨。一些科学家认为,如果月球确实存在水,人类对月球经过长期开发建设后,也有可能从月球极区提取水。

早期的月球基地的食物由地球供给,但永久月球基地则必须自给自足。

在月球上种庄稼

在南太平洋的某处海底,静静地躺着俄罗斯“和平”号空间站的残骸,它搭载着一个由保加利亚制造的微型温室。1999年,世界上第一代太空小麦正是在这个仅1平方米大的空间里问世的,从而揭开了在太空种植粮食作物的新纪元。

在太空种植粮食的尝试几乎是和人类探索太空同步开始的,科学家们曾经试图用“阿波罗”飞船从月球带回来的泥土培育植物。从1975年起,每一次前苏联飞船升空,都会带着一个苗床。然而,在天上种地并不像在地面那么简单。美国的地球生态学家杰伊·斯基尔斯说,失重会影响植物根系向下生长;不同的光照条件和空气分也会干扰植物的成长;没有了昆虫,授粉也无法进行。

尽管人类曾经在非粮食类作物的试验上取得了一些进展,但真正在太空种植粮食获得成功是在20世纪80年代,前苏联聘请保加利亚为其建造了搭载“和平”号上的实验用温室之后。到了90年代初,航天员成功地在这个40厘米高的温室里种出了莴苣和萝卜。从1995年开始,美国和俄罗斯科学家们尝试种植小麦。4年后,他们的努力终于得到了回报,1999年收获了第一代太空小麦。

第二代太空小麦第一代508粒太空小麦收获后被再次播种,并在当年结出了第二代太空小麦,每一粒都有第一代的2倍大。科学家们认为,太空的生长环境有助于提高作物产量,增强抗病性。他们将研究粮食在太空中的其他用途,使其在人类太空生活的各个方面都能发挥作用,最终帮助人类实现向其他星球移民的宏伟计划。

国际空间站升空后,美国和俄罗斯的专家又开始了空间植物研究。在国际空间站上的作物实验装置里,航天员栽种过豌豆和日本洋白菜,其中豌豆种植实验已成功收获了4次。从2004年11月开始,国际空间站上第10长期考察组成员——俄罗斯航天员萨利占·沙里波夫和美国华裔航天员焦立中在国际空间站上栽培日本洋白菜、水萝卜和第四代豌豆;2005年他们的接班人继续照料所种的萝卜。这些研究将帮助确定最佳的土壤成分和研制可以用于更大太空温室的工艺,其中包括可在行星间飞船中使用的温室和月球基地上的大型温室。

在太空失重条件下,植物种子发芽率更高,生长更快近几年来,科学家空间站上进行了大量的生物学试验证明在太空失重条件下,植物种子的发芽率更高,生长更快,开花或抽穗时间更早。也对一些动物进行了试验。月球温室示意图在空间站里果蝇能像在地球上一样交配、产卵、繁殖后代;蜜蜂会筑巢,蜂王照样生儿育女。科学家们还在空间站采用“营养液”,对培育农作物进行了不少实验研究。

月壤中有农作物所需的多种元素,但缺乏氮、锌、硼等农作物所需的微量元素。

科学家们设想在月球上培育粮食和蔬菜,首先要建造由特殊材料构成的月球温室,其次要有人造阳光,另外还要使用含有钾和钙等成分的特殊液体养料,先在基地内进行试验。然后扩大规模,科学家还在研究用化学物理方法合成氨基酸,如培养蛋白质较高的小球藻,来制备航天员食品。食物在月球上是可以解决的。

循环生态系统

建设永久性月球基地、月球工厂或月球村,需要解决封闭循环生态系统问题,以便能够提供给人体长期所需的食物、水和空气,并长时间保持良好的生态环境。

科学家在国际空间站的实验表明。在发光二极管的光照下,植物能够进行正常的光合作用,释放出氧气。人可以吸入植物释放出的氧气,呼出二氧化碳,为植物进行光合作用提供条件。植物通过光合作用又将光、二氧化碳和水转化为碳水化合物并释放出氧气,碳水化合物可作为人的食品。同时,人类排泄物在微生物作用下可形成降解物,其中的养分可供植物生长,这样就可以形成一个人造的“小生物圈”,为建立密闭的循环生态系统提供条件。

人类在月球上的生活是可能想象的

王绶琯,天文学家。1923年1月15日生于福建福州。1980年当选中国科学院院士,历任中国科学院北京天文台研究员、台长、名誉台长;曾任中国科学院数学物理学部主任、国家科委天文学科组副组长等职。开创了中国的射电天文学观测研究领域,也是中国现代天体物理学的主要奠基者之一。1993年,由紫金山天文台发现的国际编号为3171号的小行星,被正式命名为“王绶琯星”,以示对这位中国天文学者的尊敬。

以下是王缓琯院士关于人类登月的答问。

问:奔月是神话吗?

王绶琯院士王绶琯:20世纪的天文学发生了前所未有的飞跃。人类第一次能够用完全科学的语言来描述宇宙从大约120亿年前诞生一直演变到我们今日所见的大千世界的历程。这一方面得力于20世纪中期各种技术的高速发展。以往天文观测凭借的望远镜,虽然威力愈来愈大,但观测所及仅限于天文目标发来的光(人的眼睛能反应的“可见光”)所带到的信息,而20世纪中叶射电天文手段的成熟,使日常观测范围延伸到了天体的无线电波;到了后叶,借助于航天技术,空间天文手段的发展已使包括红外射线、紫外射线、X射线、γ射线的各种天文信息尽收眼底;目前,各种天文手段上投资数亿的设备已在陆续投入观测工作;人们可以期待这几十年里新一代的天文设备将到月亮上安居。奔月将不再是神话传说,月宫里的嫦娥将不再寂寞。