书城童书热学大探秘(物理知识知道点)
2991300000043

第43章 热核聚变与人造太阳(2)

外真空杜瓦是EAST装置最外层的结构部件。它主要为真空室等内部部件提供真空工作环境,隔绝内部部件与环境的自由热交换,以实现对运行温度的控制,从而满足总体设计要求。

根据核聚变发生的机理,要实现可控制的核聚变实际上比造个太阳要难多了。我们知道,所有原子核都带正电,两个原子核要聚到一起,必须克服静电斥力。两个核之间靠得越近,静电产生的斥力就越大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。要使它们联起手来并不难,难的是既要让它们有拉手的机会又不能让它们过于频繁地拉手。要使它们有机会拉手,就要使粒子间有足够的高速碰撞的机会,这可以增加原子核的密度和运动速度。但增加原子核的密度是有限制的,否则一旦反应加速,自身放出的能量会使反应瞬间爆发。据计算,在维持一定的密度下,粒子的温度要达到1亿~2亿摄氏度才行,这要比太阳上的温度(中心温度1500万℃,表面也有6000℃)还要高许多。但这样高的温度拿什么容器来装它们呢?

这个问题并没有难倒科学家,20世纪50年代初,前苏联科学家塔姆和萨哈罗夫提出磁约束的概念。前苏联库尔恰托夫原子能研究所的阿奇莫维奇按照这样的思路,不断进行研究和改进,于1954年建成了第一个磁约束装置。他将这一形如面包圈的环形容器命名为托卡马克(tokamak)。托卡马克是“磁线圈圆环室”的俄文缩写,又称环流器。这是一个由封闭磁场组成的“容器”,像一个中空的面包圈,可用来约束电离了的等离子体。我们知道,一般物质到达10万℃时,原子中的电子就脱离了原子核的束缚,形成等离子体。等离子体是由带正电的原子核和带负电的电子组成的气体,整体是电中性的。在磁场中,它们的每个粒子都是显电性的,带电粒子会沿磁力线做螺旋式运动,所以等离子体就这样被约束在这种环形的磁场中。这种环形的磁场又叫磁瓶或磁笼,看不见,摸不着,也不接触有形的物体,因而也就不怕什么高温了,它可以把炙热的等离子体托举在空中。人们本来设想,有了“面包炉”,只需把氘、氚放入炉内加火烤制,把握好火候,能量就应该流出来。其实不然,人们接着遇到的麻烦是,在加热等离子体的过程中能量耗散严重,温度越高,耗散越大。一方面,高温下粒子的碰撞使等离子体的粒子会一步一步地横越磁力线,携带能量逃逸;另一方面,高温下的电磁辐射也要带走能量。这样,要想把氘、氚等离子体加热到所需的温度,不是件容易的事。另外,磁场和等离子体之间的边界会逐渐模糊,等离子体会从磁笼里钻出去,而且当约束等离子体的磁场一旦出现变形,就会变得极不稳定,造成磁笼断开或等离子体碰到聚变反应室的内壁上。

托卡马克中等离子体的束缚是靠纵场(环向场)线圈,产生环向磁场,约束等离子体,极向场控制等离子体的位置和形状,中心螺管也产生垂直场,形成环向高电压,激发等离子体,同时加热等离子体,也起到控制等离子体的作用。

几十年来,人们一直在研究和改进磁场的形态和性质,以达到长时间的等离子体的稳定约束;还要解决等离子体的加热方法和手段,以达到聚变所要求的温度;在此基础上,还要解决维持运转所耗费的能量大于输出能量的问题。每一次等离子体放电时间的延长,人们都为之兴奋;每一次温度的提高,人们都为之欢呼;每一次输出能量的提高,都意味着我们离聚变能的应用更近了一步。尽管取得了很大进步,但障碍还是没有克服。到目前为止,托卡马克装置都是脉冲式的,等离子体约束时间很短,大多以毫秒计算,个别可达到分钟级,还没有一台托卡马克装置实现长时间的稳态运行,而且在能量输出上也没有做到不赔本运转。

为了维持强大的约束磁场,电流的强度非常大,时间长了,线圈就要发热。从这个角度来说,常规托卡马克装置不可能长时间运转。为了解决这个问题,人们把最新的超导技术引入到托卡马克装置中,也许这是解决托卡马克稳态运转的有效手段之一。目前,法国、英国、俄罗斯和中国共有4个超导的托卡马克装置在运行,它们都只有纵向场线圈采用超导技术,属于部分超导。其中法国的超导托卡马克ToreSupra体积较大,它是世界上第一个真正实现高参数准稳态运行的装置,在放电时间长达120秒的条件下,等离子体温度为2000万℃,中心粒子密度每立方米1.5×1019个。中国和韩国正在建造全超导的托卡马克装置,目标是实现托卡马克更长时间的稳态运行。

多年来,全世界共建造了上百个托卡马克装置,在改善磁场约束和等离子体加热上下足了工夫。人们对约束磁场研究有了重大进展,通过改变约束磁场的分布和位形,解决了等离子体粒子的侧向漂移问题。世界范围内掀起了托卡马克的研究热潮。美国1982年在普林斯顿大学建成的托卡马克聚变实验反应堆(TFTR),欧洲1983年6月在英国建成更大装置的欧洲联合环(JET),1985年建成JT-60,前苏联1982年建成超导磁体的T-15,它们后来在磁约束聚变研究中作出了决定性的贡献。特别是欧洲的JET已经实现了氘—氚的聚变反应。1991年11月,JET将含有14%的氚和86%的氘混合燃料加热到了3亿摄氏度,聚变能量约束时间达2秒。反应持续1分钟,产生了1018个聚变反应中子,聚变反应输出功率约1.8兆瓦。1997年9月22日创造了核聚变输出功率12.9兆瓦的新纪录。这一输出功率已达到当时输入功率的60%。不久输出功率又提高到16.1兆瓦。在托卡马克上最高输出与输入功率比已达1.25。

中国的核聚变研究也有较快的发展,西南物理研究院1984年建成中国环流器一号(HL-1),1995年建成中国环流器新一号。中国科学院等离子体物理研究所1995年建成超导装置HT-7。HT-7是前苏联无偿赠送给中国的一套纵向超导的托卡马克实验装置,经等离子体物理研究所的不断改进,它已成为一个庞大的实验系统。它包括HT-7超导托卡马克装置本体、大型超高真空系统、大型计算机控制和数据采集处理系统、大型高功率脉冲电源及其回路系统、全国规模最大的低温氦制冷系统、兆瓦级低杂波电流驱动和射频波加热系统以及数十种复杂的诊断测量系统。在十几次实验中,取得若干具有国际影响的重大科研成果。特别是在2003年3月31日,实验取得了重大突破,获得超过1分钟的等离子体放电,这是继法国之后第二个能产生分钟量级高温等离子体放电的托卡马克装置。在HT-7的基础上,等离子体物理研究所研制和设计了全超导托卡马克装置HT-7U(后来名字更改为EAST(ExperimentalAdvancedSuperconductingTokamak))。