书城公版Darwin and Modern Science
4906100000025

第25章

Gardeners have produced, by means of long continued artificial selection, a variety of Stock, which bears entirely double, and therefore infertile flowers (Ibid. page 230.). Nevertheless the variety continues to be reproduced from seed, because in addition to the double and infertile flowers, the seeds always produce a certain number of single, fertile blossoms, and these are used to reproduce the double variety. These single and fertile plants correspond "to the males and females of an ant-colony, the infertile plants, which are regularly produced in large numbers, to the neuter workers of the colony."This illustration is entirely apt, the only difference between the two cases consisting in the fact that the variation in the flower is not a useful, but a disadvantageous one, which can only be preserved by artificial selection on the part of the gardener, while the transformations that have taken place parallel with the sterility of the ants are useful, since they procure for the colony an advantage in the struggle for existence, and they are therefore preserved by natural selection. Even the sterility itself in this case is not disadvantageous, since the fertility of the true females has at the same time considerably increased. We may therefore regard the sterile forms of ants, which have gradually been adapted in several directions to varying functions, AS A CERTAIN PROOF that selection really takes place in the germ-cells of the fathers and mothers of the workers, and that SPECIAL COMPLEXES OF PRIMORDIA (IDS) are present in the workers and in the males and females, and these complexes contain the primordia of the individual parts (DETERMINANTS). But since all living entities vary, the determinants must also vary, now in a favourable, now in an unfavourable direction. If a female produces eggs, which contain favourably varying determinants in the worker-ids, then these eggs will give rise to workers modified in the favourable direction, and if this happens with many females, the colony concerned will contain a better kind of worker than other colonies.

I digress here in order to give an account of the intimate processes, which, according to my view, take place within the germ-plasm, and which Ihave called "GERMINAL SELECTION." These processes are of importance since they form the roots of variation, which in its turn is the root of natural selection. I cannot here do more than give a brief outline of the theory in order to show how the Darwin-Wallace theory of selection has gained support from it.

With others, I regard the minimal amount of substance which is contained within the nucleus of the germ-cells, in the form of rods, bands, or granules, as the GERM-SUBSTANCE or GERM-PLASM, and I call the individual granules IDS. There is always a multiplicity of such ids present in the nucleus, either occurring individually, or united in the form of rods or bands (chromosomes). Each id contains the primary constituents of a WHOLEindividual, so that several ids are concerned in the development of a new individual.

In every being of complex structure thousands of primary constituents must go to make up a single id; these I call DETERMINANTS, and I mean by this name very small individual particles, far below the limits of microscopic visibility, vital units which feed, grow, and multiply by division. These determinants control the parts of the developing embryo,--in what manner need not here concern us. The determinants differ among themselves, those of a muscle are differently constituted from those of a nerve-cell or a glandular cell, etc., and every determinant is in its turn made up of minute vital units, which I call BIOPHORS, or the bearers of life.

According to my view, these determinants not only assimilate, like every other living unit, but they VARY in the course of their growth, as every living unit does; they may vary qualitatively if the elements of which they are composed vary, they may grow and divide more or less rapidly, and their variations give rise to CORRESPONDING variations of the organ, cell, or cell-group which they determine. That they are undergoing ceaseless fluctuations in regard to size and quality seems to me the inevitable consequence of their unequal nutrition; for although the germ-cell as a whole usually receives sufficient nutriment, minute fluctuations in the amount carried to different parts within the germ-plasm cannot fail to occur.

Now, if a determinant, for instance of a sensory cell, receives for a considerable time more abundant nutriment than before, it will grow more rapidly--become bigger, and divide more quickly, and, later, when the id concerned develops into an embryo, this sensory cell will become stronger than in the parents, possibly even twice as strong. This is an instance of a HEREDITARY INDIVIDUAL VARIATION, arising from the germ.

The nutritive stream which, according to our hypothesis, favours the determinant N by chance, that is, for reasons unknown to us, may remain strong for a considerable time, or may decrease again; but even in the latter case it is conceivable that the ascending movement of the determinant may continue, because the strengthened determinant now ACTIVELYnourishes itself more abundantly,--that is to say, it attracts the nutriment to itself, and to a certain extent withdraws it from its fellow-determinants. In this way, it may--as it seems to me--get into PERMANENTUPWARD MOVEMENT, AND ATTAIN A DEGREE OF STRENGTH FROM WHICH THERE IS NOFALLING BACK. Then positive or negative selection sets in, favouring the variations which are advantageous, setting aside those which are disadvantageous.