书城公版Volcanic Islands
5347500000041

第41章

Some of the finest streaks of colour in the stony layers, alternating with the obsidian, can be distinctly seen to be due to an incipient crystallisation of the constituent minerals.The extent to which the minerals have crystallised can, also, be distinctly seen to be connected with the greater or less size, and with the number, of the minute, flattened, crenulated air-cavities or fissures.Numerous facts, as in the case of geodes, and of cavities in silicified wood, in primary rocks, and in veins, show that crystallisation is much favoured by space.Hence, Iconclude, that, if in a mass of cooling volcanic rock, any cause produced in parallel planes a number of minute fissures or zones of less tension (which from the pent-up vapours would often be expanded into crenulated air-cavities), the crystallisation of the constituent parts, and probably the formation of concretions, would be superinduced or much favoured in such planes; and thus, a laminated structure of the kind we are here considering would be generated.

That some cause does produce parallel zones of less tension in volcanic rocks, during their consolidation, we must admit in the case of the thin alternate layers of obsidian and pumice described by Humboldt, and of the small, flattened, crenulated air-cells in the laminated rocks of Ascension;for on no other principle can we conceive why the confined vapours should through their expansion form air-cells or fibres in separate, parallel planes, instead of irregularly throughout the mass.In Mr.Stokes'

collection, I have seen a beautiful example of this structure, in a specimen of obsidian from Mexico, which is shaded and zoned, like the finest agate, with numerous, straight, parallel layers, more or less opaque and white, or almost perfectly glassy; the degree of opacity and glassiness depending on the number of microscopically minute, flattened air-cells; in this case, it is scarcely possible to doubt but that the mass, to which the fragment belonged, must have been subjected to some, probably prolonged, action, causing the tension slightly to vary in the successive planes.

Several causes appear capable of producing zones of different tension, in masses semi-liquified by heat.In a fragment of devitrified glass, I have observed layers of sphaerulites which appeared, from the manner in which they were abruptly bent, to have been produced by the simple contraction of the mass in the vessel, in which it cooled.In certain dikes on Mount Etna, described by M.Elie de Beaumont ("Mem.pour servir" etc.tome 4 page 131.), as bordered by alternating bands of scoriaceous and compact rock, one is led to suppose that the stretching movement of the surrounding strata, which originally produced the fissures, continued whilst the injected rock remained fluid.Guided, however, by Professor Forbes'