警察与小偷之间的博弈,如同小孩子之间玩“剪刀石头布”的游戏,在这样一个游戏中,不存在纯策略均衡,对每个小孩来说,自己采取出“剪刀”、“布”还是“石头”的策略应当是随机的,不能让对方知道自己的策略,哪怕是“倾向性”的策略。如果对方知道你出其中一个策略的“可能性”大,那么你在游戏中输的可能性就大。因此,每个小孩的最优混合策略是采取每个策略的可能性是1/3。在这样的博弈中,每个小孩各取三个策略的1/3是纳什均衡。由此可见:纯策略是参与者一次性选取的,并且坚持他选取的策略;而混合策略是参与者在各种备选策略中采取随机方式选取的。在博弈中,参与者可以改变他的策略,而使得他的策略选取满足一定的概率。当博弈是零和博弈时,即一方所得是另外一方的所失时,此时只有混合策略均衡。对于任何一方来说,此时不可能有纯策略的占优策略。
斗鸡博弈的难局
试想有两只公鸡遇到一起,每只公鸡有两个行动选择:一是退下来,一是进攻。如果一方退下来,而对方没有退下来,对方获得胜利,这只公鸡则很丢面子;如果对方也退下来双方则打个平手;如果自己没退下来,而对方退下来,自己则胜利,对方则失败;如果两只公鸡都前进,那么则两败俱伤。因此,对每只公鸡来说,最好的结果是,对方退下来,而自己不退,但是此时面临着两败俱伤的结果。
两者如果均选择“前进”,结果是两败俱伤,两者均获得-2的支付;如果一方“前进”,另外一方“后退”,前进的公鸡获得1的支付,赢得了面子,而后退的公鸡获得-1的支付,输掉了面子,但没有两者均“前进”受到的损失大;两者均“后退”,两者均输掉了面子获得-1的支付。当然这些数字只是相对的值。
这个博弈有两个纳什均衡:一方前进,另一方后退。但关键是谁进、谁退?一个博弈,如果有惟一的纳什均衡点,那么这个博弈是可预测的,即这个纳什均衡点就是一事先知道的惟一的博弈结果。但是如果一博弈有两个或两个以上的纳什均衡点,则无法预测出一个结果来。因此,我们无法预测斗鸡博弈的结果,即不能知道谁进谁退,谁输谁赢。
用这个博弈来解释美苏两个超级大国之间的古巴导弹危机,是最合适不过的了。
面对美国的反应,苏联面临着是将导弹撤回国还是坚持部署在古巴的选择?而对于美国,则面临着是挑起战争还是容忍苏联的挑衅行为的选择?也就是说,这两只大公鸡均在考虑采取进的策略还是退的策略?
战争的结果当然是两败俱伤,而任何一方退下来(而对方不退)则是不光彩的事。结果是苏联将导弹从古巴撤了下来,做了丢面子的“撤退的鸡”。美国坚持了自己的策略,做了“不退的鸡”。当然,为了给苏联一点面子,同时也担心苏联坚持不退而发生美苏战争——这是美国不愿意看到的,美国象征性地从土耳其撤离了一些导弹。古巴导弹危机是冷战期间美苏两霸之间发生的最严重的一次危机。
这就是美国与苏联在古巴导弹上的博弈结果。对于苏联来说,退下来的结果是丢了面子,但总比战争要好;对美国而言,既保全了面子,又没有发生战争。这就是这两只“大公鸡”博弈的结果。
左边还是右边
前面我们已知,在博弈中纳什均衡点如果有两个或两个以上,结果就难以预料。这对每个博弈方都是麻烦事,因为后果难料,行动也往往进退两难。一个小例子就是两个骑自行车的人对面碰头,很容易互相“向住”:因为不知道对方会不会躲、往哪边躲,自己也不知该如何反应,于是撞到一起。
自行车相撞一般不会造成什么大麻烦,可是如果换成马车、汽车,就可能出现伤亡。所以,应该有一个强制性的规定,来告诉人们该怎么做。
开车的时候你应该走哪一边?假如别人都靠右行驶,你也会留在右边。套用“假如我认为他认为”的框架进行分析,假如每个人都认为其他人认为每个人都会靠右行驶,那么每个人都会靠右行驶,而他们的预计也全都确切无误。靠右行驶将成为一个均衡。
不过,靠左行驶也是一个均衡,正如在英国、澳大利亚和日本出现的情况。这个博弈有两个均衡。均衡的概念没有告诉我们哪一个更好或者哪一个应该更好。假如一个博弈具有多个均衡,所有参与者必须就应选择哪一个达成共识,否则就会导致困惑。
海上航行也要面临同样的问题,尽管大海辽阔,但是航线却是比较固定的,因此船只交会的机会很多,这些船只属于不同的国家,如何调节谁进谁退的问题呢?先来看一个小笑话:
一艘军舰在夜航中,舰长发现前方航线上出现了灯光。
舰长马上呼叫:“对面船只,右转30度。”
对方回答:“请对面船只左转30度。”
“我是美国海军上校,右转30度。”
“我是加拿大海军二等兵,请左转30度。”
舰长生气了:“听着,我是‘列克星顿’号战列舰舰长,这是美国海军最强大的武装力量,右转30度!”
“我是灯塔管理员,请左转30度。”
即使你官阶、舰船再大,灯塔也不会给你让路。那么,如果是两条船相遇,又如何决定呢?
谁先让不能等待临时谈判,也不是由官阶说了算。海上避碰也有像许多国家规定车辆在马路上靠右走那样不容谈判的规矩。人们规定,迎面交会的船舶,各向右偏一点儿,问题就解决了。十字交叉交会的船舶,则规定看见对方左舷的那艘船要让,慢下来或者偏右一点儿都可以。这就从制度上规定了避让的方式。
这十字交叉交会时如何避免碰撞的规矩,就是上述博弈的两个纳什均衡中的一个。究竟哪一个纳什均衡真正发生,现在就看两船航行的相互位置。如果甲看见乙的左舷,甲要让乙原速直走,就是右上角那个纳什均衡;如果乙看见甲的左舷,乙要让甲原速直走。
谁打电话
上面的例子是通过规定解决了问题,不过,若是遇到电话打到一半突然断了的事,你该怎么办?
假如你正在和女友通话,电话断了,而话还没说完。这时有两个选择,马上打给对方,或等待对方打来。注意:如果你打过去,她就应该等在电话旁,好把自家电话的线路空出来,如果她也在打给你,你们只能听到忙音;另一方面,假如你等待对方打电话,而她也在等待,那么你们的聊天就没有机会继续下去。
一方的最佳策略取决于另一方会采取什么行动。这里又有两个均衡:一个是你打电话而她等在一边,另一个则是恰好相反。
一个解决方案是,原来打电话的一方再次负责打电话,而原来接电话的一方则继续等待电话铃响。这么做的好处是原来打电话的一方知道另一方的电话号码,反过来却未必是这样。
另一种可能性是,假如一方可以免费打电话,而另一方不可以(比如你是在办公室而她用的是住宅电话),那么,解决方案是拥有免费电话的一方应该负责第二次打电话。还有一种比较通常的解决方法是,由较热切的一方来打电话,如一个煲电话粥成瘾的家庭主妇对谈话的热情很高,而她的同伴就未必这样,这种情况下通常是她打过去。再如恋爱中的男女遇到这种情况,通常也是由主动追求者打电话。
假如不考虑以上因素,那么打这个电话又得用到这种“混合策略”了:设想双方都投硬币决定自己是不是应该给对方打电话,根据前面给出的条件,两人这种随机行动的组合成为第三个均衡。
假如我打算给你打电话,我有一半机会可以打通(因为这时你恰巧在等我打电话),还有一半机会发现电话占线;假如我等你打电话,那么,我同样会有一半机会接到你的电话,因为你有一半机会主动给我打电话。
每一个回合双方完全不知道对方将会采取什么行动,他们的做法实际上对彼此都最理想。因为我们只有一半机会重新开始被打断的电话聊天,我们知道我们(平均来说)要尝试两次才能成功接通。
需要再次强调的是:均衡不一定是博弈的最优结果。在“囚徒困境”中,惟一的均衡是一起招认,站在群体的角度,这是最坏的结果。均衡只是博弈的最“稳定”结果,或者说是最可能出现的结果。那么,这就需要我们思考一个问题:如果这个“稳定”结果效果不佳,我们能否找到合理的策略打破这个“均衡”?