书城科普破解的天书下
20760800000004

第4章 宇航科技使人类飞向太空

科技给了人类实现梦想的翅膀。宇航科技的高速发展,更为人类架起了通天的“金桥”,千百年来,一代又一代的人类科学家,以无所畏惧的探索精神和实事求是的科学态度,创造和推动着人类科技的进步。与此同时,人类航天技术的发展更是日新月异,一个个禁区被突破,一个个态度被创造。21世纪的人类正驾着科技的飞船,越飞越高,越飞越远。

一、为上青天巧借力

1.航空发展,动力先导

从20世纪初开始,飞机的军用意义已广泛引起各个国家的关注。在20~30年代,飞机从双翼机到张臂式单翼机,从木结构到全金属结构,从敞开式座舱到密闭式座舱,从固定式起落架到收放式起落架,飞机外形结构和气动布局已经发生了革新性变化。二次世界大战期间,参战飞机数量猛增,性能迅速提高,军用航空显然已对战争局势具有举足轻重的影响。战后,航空科学技术迅速地发展,特别表现在飞机空气动力外形的改进上。所谓空气动力外形,就是应用空气动力学原理来设计飞机外形,使得它的升力高,阻力小,稳定性、操纵性好。比如,机身尽可能呈流线型,减少突起物,以此来减小阻力。机翼的形状和配置也相当讲究。低速飞机通常用长方形或梯形翼。当飞机飞行速度到达声速附近或超过声速以后,就要采用像燕子翅膀似的后掠机翼。超声速战斗机或轰炸机的机翼可采用三角形的平面形状。飞机的飞行速度从低速到高速发展,与机翼从直机翼到后掠翼、三角翼、边条翼这些飞机气动构形的不断地演变密切相关。可我们的力学家为了这些气动外形的演进,不知付出了多少心血。世界各国的空气动力学研究机构都投入相当大的人力、物力,致力于飞机机翼翼型的理论分析和风洞实验研究。翼型指的是机翼横切剖面形状。剖面形状是影响机翼升力的重要因素。在飞机诞生的初期,飞行的主要矛盾是如何克服飞机的重力,使飞机离地升空。实践已经表明,采用大翼面积、大弯度剖面的机翼,克服重力而升空不成问题。当飞机速度不断提高,特别是超声速飞机出现后,推动飞机前进的力与空气阻力的矛盾就更加突出了。因此,必须找到能进一步大大减小阻力的机翼形状,才能满足飞机提速后的需要。有人做过统计,经过各国力学家长期研究,可以应用于飞机设计的机翼翼型总数已经超过15,000个,简直就是一个翼型“大仓库”。仰仗翼型的这些空气动力学研究成果,加上活塞式发动机、喷气式发动机、涡轮喷气发动机、涡轮风扇发动机、冲压发动机这一些性能越来越先进的航空动力装置的相继出现,飞机设计师才有可能设计出飞得高、飞得快、飞得远而且又灵活机动的一代又一代新型飞机。

二次大战前,飞机的速度超不过声速(每秒340米)。当时有人认为声速不可逾越,就是说飞机速度要达到和超过声速,似乎所需要的发动机的推力就得要大得不得了,而且飞机也难以驾驶。这就是所谓声障。但是由于空气动力学的发展,升力理论、阻力理论、稳定性操纵性理论、飞行力学理论的突破性进展,力学家根据这种飞行速度时空气流动的特点,采用后掠翼和小展弦比机翼机身组合体等先进的空气动力布局,1947年便出现首架超声速飞机,“声障”很快成为了一个历史名词。随着空气动力学、结构力学和材料科学的进展,飞机飞行突破声障之后,飞行速度接着又达到声速的2~3倍,进入了超声速飞行时代。

所有通过大气层的飞行器,都要利用理论计算和风洞实验来确定它们的空气动力外形和空气动力特性。实验家努力发展从亚跨声速到高超声速速度范围配套的风洞实验设备,并利用新的观测、显示、信息处理手段,揭示新的流动现象,为飞行器设计师更快的提供更多、更精确的气动力数据。理论家根据空气动力学的原理和各种理论,努力把实验揭示出的流动现象就其最典型的简化形态概括成数学模型。主要依靠数学分析的方法,研究流动现象中各种物理量之间的关系和变化以及这种关系和变化对飞行器性能的影响,尽可能获得有利的流动,避开不利的流动。经过反反复复研究变化中的变化,关系中的关系,才能对流动的物理实质和主要矛盾作出合理的解释和预测,以便把握新的流动规律,创造出飞行器新的设计思想、设计概念和设计方法。计算家则在已建立的数学模型指引下,利用当代最先进的电子计算机,致力于发展新的算法和软件,模拟更复杂的飞行器外形和流动现象。这些复杂的流动现象,是航空航天工程应用必然遇到和必须解决的。亚声速、跨声速(指0.75~1.2倍声速范围)和超声速(指1.2~5倍声速范围)空气动力学的发展,才使得后掠翼、小展弦比细长翼和三角翼气动布局在飞机设计中成功地应用,促使了第一代超声速战斗机和旅客机的诞生。1954年问世的F102蜂腰形超声速战斗机就是其中第一代战斗机的代表。

随着电子计算机的迅速发展,利用空气动力学经典的欧拉方程和考虑到介质的粘性建立起来的纳维斯托克斯方程,可以进行飞行器比较复杂流动的计算。现在已经进入对整个机身的空气动力特性进行整体计算的阶段。诞生了对航空工程发展起到先导作用的许多新的设计思想,加上在气动布局上精细的设计计算和风洞实验分析,使得具有高升力特性和良好操纵性、稳定性的第三代战斗机群应运而生。著名的美国F-15、F-16和前苏联的苏-27、米格29,就是其中的代表。这些战斗机的主要特点是:升限可至18~19公里,最大速度低空时为1350~1450公里/时;高空时为2300~2500公里/时,机动性(指转弯、加速、减速和爬升性能)也极好,保证能有效地进行近距空战和截击高空高速目标时能进入有利的攻击位置。

1991年海湾战争中多国部队运用的“空、地一体战”体系的核心是空中优势,说明发展飞机技术对未来战争的胜败至关重要。经过近20年来在超声速巡航、过失速机动、隐身外形(即采用技术措施有效地减小雷达的反射和红外辐射,使飞机不易被敌方发现)的气动布局等综合研究的基础上,美国又率先推出21世纪使用的先进战斗机F-22。

同时,国际民航事业一直在持续并高速发展着。从50年代喷气客机问世以来,全世界民客运年平均增长12%左右,约为同期经济增长的2倍。据专家预测,到2005年,民航市场的空运量将比90年代初翻一番。目前正在进行的民用飞机的层流控制技术和细长体布局研究,将为新一代亚声速干线飞机、第二代超声速旅客机提供可选用的外形。

2.空气动力学支持航空技术的发展

航空与航天是20世纪人类认识和改造自然进程中最活跃、最有影响的科学技术领域。人类从陆地到大气层,从大气层到宇宙空间,每一次活动范围的飞跃,都集中了航空航天技术的众多新成就。空气动力学在航空航天的进步和发展中扮演了非常重要的角色。

没有接触过空气动力学的人们感到“空气动力”看不到、摸不着、很抽象、难理解。因此自然会联想到空气动力学这门科学深奥、难懂。实则不然,凡是有空气(原指流体)流动的地方,都有空气动力学的问题。因此,空气动力学应该成为现代社会必须普及的知识。

空气动力学既是基础科学,也是技术科学。它是在数学和理论物理的基础上发展起来的一门学科。它的研究领域十分广泛,与国民经济、国防建设有着直接的密切的关系。飞机、导弹、卫星、宇宙飞船、航天飞机等的研究与发展离不开它;汽车、火车、轮船等交通工具的发展离不开它;就是农林、环保、风工程也离不开空气动力学。人们已逐渐认识到了空气与物体只要有相对运动,在物体上就会有空气动力的作用。所以空气动力学是一门研究空气与物体有相对运动时空气的流动情况及空气在物体上产生空气动力的科学。

自从1903年美国莱特(Wright)兄弟试制成功人类历史上第一架低速飞机起,在低速飞机不断完善、发展的过程中,人们用古老的流体力学理论,对飞机在空气中运动时产生的力、力矩深入进行了研究,逐步掌握其规律。随着飞行速度的提高,为了要使飞行速度超过声速,人们克服了重重困难,终于突破了“声障”,于是就产生了超声速空气动力学。今天,人造卫星满天飞,载人飞船已多次把人送上月宫,星际探测器已飞出太阳系,到茫茫的太空去遨游。由于火箭、导弹的飞行速度高达十几倍声速,于是遇到了“热障”。人们发展了气动加热及热防护的理论和方法,保证导弹再入大气层,准确地击中地面目标,以及卫星安全返回地面。总之,随着航空航天技术的不断发展,使空气动力学这门基础科学得到了飞速的发展,使它的内容更加丰富,应用的领域更加广阔。

3.风洞:飞行器的摇篮

飞行器空气动力学问题的研究有三大手段,即理论分析、地面模拟和飞行试验。随着航空航天科学技术的发展,空气动力地面模拟实验的方法也在不断发展。从物体的自由落体观察到空气动力车、旋臂、水洞,一直发展到风洞、缩尺模型飞行试验、弹道靶实验等。其中应用最广泛,试验数据可靠、重复性好、精度高的实验设备是风洞。

自从风洞问世以来,由于它具有重演物体在空气(泛指流体)中运动时所产生的复杂物理现象的本领,所以立即受到航空、航天及国民经济其他领域的科技人员的重视与关注。风洞不但是航空航天领域最重要、应用最广泛的实验设备之一,而且在国民经济的许多领域也得到了广泛应用。

随着飞机速度和性能的提高,风洞实验的小时数也随之迅速增加。据统计,1940年前后,老式螺旋桨飞机只需要进行几百个小时的风洞实验,而70年代的协和式超声速巨型客机要进行4~5万个小时的风洞实验。1981年试飞成功的航天飞机要进行6~10万个小时的风洞实验,相当于一个风洞十年的工作量。所用的风洞实验费用约2亿美元。

一架新飞机的诞生要在十几座不同类型不同速度范围的风洞中进行十多项实验。如飞机选型实验、操纵性和稳定性实验、发动机与进气道的匹配实验、飞机表面的防热实验等。每架新飞机试飞以前必须具有上述风洞实验的合格证明才能予以放飞。

同样,导弹、卫星、飞船等的研制过程也必须进行大量的风洞实验,如研制美国“民兵导弹”就曾使用了17座风洞等实验设备,实验时数达37,000小时以上。不少飞行器在初次发射过程中会暴露出不少新问题,这也得靠风洞实验来找原因。例如,无人驾驶的阿波罗飞船再入大气层时,发现实际着陆点和预算着陆点竟相差380公里!原因何在?通过更进一步的风洞实验才发现,原来风洞实验模型的模拟防热层和飞行器实际防热层在几何形状上有微小的差异,使操纵面平衡角差2.5°,于是在飞行重心一定时升阻比(升力与阻力之比)损失20%,因而着陆点相差了380公里。

新的统计资料表明,一个典型飞行器型号的研制周期大约是10年左右,其中有3~4年要花在研究实验工作上,这当中空气动力问题约占一半。由此可见,一种新的飞行器的诞生、试飞及改型都得靠在风洞里做大量的气动力实验。因此飞行器设计师们都深有感触地说:“风洞是诞生飞行器的摇篮”。风洞实验既能在飞行器的新型号研制工作中提供新的构思,开辟新的技术途径,又能保证新的飞行器及时地、经济地、可靠地飞上天。这个道理很简单,因为修改图纸比修改实物容易得多,节省得多。有人做过如下的测算:飞行器在方案设计和初步设计阶段若修改飞行器外形所付的成本为1的话,那么把它制造出来进行首次飞行后再要进行外形修正,则所需付的代价是30,000。由此读者就很容易理解为什么工业发达的国家和发展中国家都十分重视空气动力实验基地的建设,先后建立起了强大的国家级空气动力实验研究中心。

4.乔治·凯利:空气动力学的奠基人

伦敦科学博物馆内收藏着一件1799年制作的小银盘。盘子的一面刻着对作用在机翼上的力的说明;另一面刻着一架滑翔机草图。飞行员坐在固定机翼下的船式机身内,操纵着一副桨式“扑动翼”,以产生推动力。尾部有组合式升降舵和水平安定面,以及组合式垂直安定面和方向舵,其安装呈十字形。如果用螺旋桨代替扑翼,那么,图上这架带动力的滑翔机和现代飞机就更加相似了。

当年制作这个小银盘的,便是航空史上被称为“空气动力学之父”的英国人乔治·凯利爵士。

凯利生于1773年12月27日,早期受过很好的教育,并同著名数学家乔治华克的女儿莎娜结为伉俪,俩人长相厮守达63年之久。凯利虽然从1792年便继承父志,开始经营庞大的产业,可是在他的内心里,却充满着征服天空的愿望和追求。

凯利10岁那年,亲眼见到了法国人作第一次载人气球飞行。那雀跃欢腾的热烈场面,惊心动魄的紧张时刻,以及凯旋的天之骄子,都使他激动不已,这一切在他那幼小的心灵中播下了飞天的种子。他想,轻于空气的气球能升天,那比空气重的鸟儿为什么会在天空中翱翔呢?于是他开始构思重于空气的航空器。

1792年,他开始用一种玩具做一连串的试验。这种玩具是从中国传入欧洲的“竹蜻蜓”。

白云万里,日丽风轻。绿草如茵的田野里,小小的竹蜻蜓一会儿翩翩飞起,一会儿飘然落下,这真叫凯利百思不解……

整整苦苦思索了12个春秋,直到1804年,他终于通过试验、观察、分析、研究,写下了第一篇有关人类飞行原理的论文,并于1809年,以“论空中航行”为题在自然哲学杂志上发表。这篇文章后来在整个西方世界被翻印转载了足足一百年。论文一再强调制造固定翼飞机的重要性,详尽地勾勒出现代飞机的轮廓,为空气动力学理论的产生和形成作出了重要贡献。他描绘出了固定翼、机尾、机身以及升降舵等的操纵面,解释了机翼的作用,并指出:适当的安定性,要从设计翼面一点点角度而获得——这简直就是现代飞机机翼讲求的“上反角”;接着又提到他的飞行器必须迎风而起,必须有垂直的和水平的舵面——这完全是现代机尾的描述。凯利的论文还阐述了速度对升力的关系,翼负荷,张力,重力的减轻,甚至内燃引擎的原理,以及流线型对飞行器的设计的重要性等等。

凯利,简直是不可思议的人物;在他所处的那个时代,许多人认为升空飞行,无异于痴人说梦。

但凯利矢志不渝,他深信只要能找到合适的引擎,他的飞行器一定可以高飞。他痛心地写到:我的发明无法试验而达到目的的惟一原因,就是如何产生一种推进的动力。

直到1848年,凯利75岁高龄,但轻重量的合适引擎仍杳无音信,他感到来日不多,惟一可试一试的只有无动力载人飞行,也就是用滑翔机飞行,来证实他的空气动力学理论。

于是在1849年,他造了一架三翼滑翔机,让一名10岁小孩坐在一只吊篮里,从小山上滑下来,一些人用绳子拉着滑翔机,迎着微风,飞机竟飘飞了一段距离。这是人类有史以来第一次载人滑翔机系留牵引飞行。

1853年,凯利又造了一架滑翔机,并装上了灵巧的刹车杠杆,进行有史以来第一次乘坐重于空气的航空器升空自由飞行。这次他把家中的马车夫放在驾驶室里,究竟飞了多远,没有明确记录,但据当时的目击者、凯利的曾孙女说,“大约500码”,事后,马车夫走下飞机叫了起来:“乔治爵士,我想请你注意,我是雇来赶车的,不是飞行的。”

1858年,凯利84岁,临终前仍然在工作间内敲敲打打,希冀制成一台轻重量的引擎,然而终无所成。

他去世前不久,曾在一本笔记本的封面内页写了一行字:“给你,查看笔记的朋友!我已去了,愿你在这些涂鸦中找到思想的花种。”

果然,这些种子在航空领域里引来了姹紫嫣红,百花争艳,开始了一个崭新的时代。

二、三大支柱,架起通天“金桥”

人类开拓空间的历程是艰辛的。要摆脱地球的引力,飞出“摇篮”,要经历千辛万苦的风雨沧桑。然而,一旦能冲出“摇篮”,就会产生一次认识上和实践上的巨大飞跃。从空间幅度看,以地球为中心,人类向宇宙空间拓展,发射人造卫星上天、登上地球自身的自然天体卫星——月球,这仅仅是人类在奔向宇宙漫长而久远的“金桥”上刚刚迈出了第一步。

近些年来,在全球范围内高技术群体蓬勃发展的大趋势下,航天技术更加活力倍增,各种新型航天器不断涌现。第三代、第四代高效率、多功能、全自动的航天器相继上天,载人航天器出现了崭新面貌,先后发射了“半永久性”空间站和自由往返天地之间的改进型航天飞机,实现了空间站与航天器的多头对接和宇航员创造在空间连续生活、工作超过一整年和在太空行走、劳作等新记录,为21世纪人类重返月球和飞往火星,提供了必要条件。在空间轨道上开展了发射、收回、修复、调整各种卫星、空间实验室、宇宙探测飞船和太空望远镜,并派出了飞往银河系寻找“外星人”的“地球特使”,同时开展了空间工业加工试验工作,为进一步拓展航天技术的空间工业应用打下了基础。航天技术在军事领域里的应用,有了突飞猛进的发展,航天兵器已悄悄进入外层空间,这给空间系统增加了安全保障,同时,也使和平的太空宇宙蒙上了一层恐怖的阴影。

令人欣喜的是航天技术的日益成熟,丰富的正反两方面经验不仅使航天事故率明显下降,而且完全按照人的科学意志行事的成功率大大提高,使举世瞩目的航天事业更加健康发展。这无疑与支撑航天技术稳步发展的三大支柱的日益坚强是分不开的。

航天技术之所以令人神往、惊叹,就由于它蕴含了现代高技术群体的集体力量。它是由运载器技术、航天器技术和航天发射与地面测控技术构成的高度综合性技术。它集中了近代力学、数学、物理学、天文学、大地测量学等基础理论,广泛应用了现代电子学、微电子学、无线电、自动化、真空、低温、高温、计算机、机械加工、冶金、化工等多学科高技术。它的发展又促进了现代天文学、空间物理学、地球物理学、生命科学、航天医学以及系统工程管理科学等一大批基础科学和应用科学的突破性发展。

1.“茁壮成长”的运载器技术

运载火箭技术的发展经历了漫长的历史。中国是发明火箭的国家。早在宋朝的宋太祖开宝三年(即公元970年),就有人开始用黑色火药装在纸筒内,点燃引线后用弓箭射向敌方,作为“火攻兵器”。到明朝初年,这种“军用火箭”已相当完善并广泛应用于战场,被称为“空中利器”,它的作用远远超过了刀、枪、剑、戟等冷兵器。到公元13世纪,中国的火箭技术传到了欧洲,也曾被列作军队的装备。但由于当时科学技术水平的限制,火箭技术一直发展很慢,以致被冷落下来,而其利用火箭喷射产生反作用力的原理却保留了下来。

第一次世界大战后,随着科学技术的进步,现代火箭技术也开始发展起来。1926年,美国哥达德发射了世界上第一支液体火箭。而真正将这种火箭技术应用于现代兵器,研制成进攻性导弹的却是德国人。第二次世界大战后期,德国法西斯集团为了挽救败局,加紧研制出一种所谓“复仇武器”1号和2号,即“V-1”和“V-2”号导弹,这就是在冯·布劳恩等人主持下研制并发射成功的世上第一种实用型“V-2”型导弹。它能将约1吨重的弹头发射到260公里远处。这种导弹的运载能力和射程,今天看来虽属微不足道的“小不点儿”,但它却是现代航天运载器的雏形。

第二次世界大战之后,前苏联和美国都在积极发展火箭导弹,美国甚至干脆把德国许多火箭专家运到美国为之研究在“V-2”基础上发展新型远程弹道式导弹技术。1957年8月,苏联发射成功世界上第一颗洲际弹道导弹,同年12月,美国也发射了自己的洲际弹道导弹。

导弹是在火箭基础上发展起来的。具体说,依靠火箭发动机推进的飞行器而未装备制导系统,依靠其弹道自由飞行的称为火箭。这种飞行器如装载的有效载荷是战斗部(各类型的炸药),则称为火箭武器;有效载荷不是战斗部而是某种仪器设备,则根据其任务不同而称其为“探空火箭”、“卫星运载火箭”等等。依靠火箭发动机推动的飞行器既装有战斗部,又装有制导系统的火箭,就称为导弹了。因此,一般说火箭与导弹是既有区别又有联系的一种装备。一颗火箭发动机推进的飞行器,装上制导系统,再装上航天器,就成为航天运载火箭;如装上战斗部,就是导弹。可见有效载荷一更换,它就“变种”了。这就是为什么1957年8月苏联发射世界上第一颗洲际导弹之后两个月,到1957年10月4日就又发射成功世界上第一颗人造地球卫星,这是因为把同一种洲际导弹头更换上人造卫星就发射上去了。

作为航天运载器,在目前技术条件下,要达到每秒7.9公里以上的飞行速度,需要很大的推力。因此,依靠单级火箭是无能为力的,只有依靠多级火箭,实行“接力推举”,运载器起飞后,第一级火箭完成任务、燃料也烧完了,就可脱离运载器同时起动第二级火箭,依次接力,使运载器速度不断增加,而重量又不断减轻。所以,运载火箭都是多级的,一般有两级、三级,还有四级的。

运载器的多级火箭大多使用液体推进剂,一般用酒精、煤油和液氧作燃料,先进的运载火箭已大多使用液氢和液氧高能推进剂;还有的“助推火箭”、“末级火箭”多使用固体推进剂实质上是一种高能火药做燃料,在燃爆中产生巨大推力。目前,运载火箭的重量多为数十吨至数百吨,个别特大型的达到数千吨。长度一般为数十米,个别大型的达100米;直径多为数米,个别大型的达10米。

随着70年代航天技术的新发展,在近地轨道上建立了空间站。这种空间站一般都在300~800公里高度的近地轨道上,地心引力已极其微弱,处于微重力状态,科学家们就设想,在发射未来飞行星际宇宙飞船时,就可以避开地球引力,不需要制造大功率运载火箭从地面上发射,而是可以先从地面发射“散装件”,然后在空间站上组装好,再从空间站上发射。事实上,从1981年4月12日美国航天飞机上天后,已多次从航天飞机上发射宇宙探测飞船和各种绕地人造卫星。这样就可以大大节省运载火箭的推力了。因为在航天飞机上或空间站上发射航天器,它们本身既在失重条件下,又已具备了每小时2.8万公里的速度,即已有相当于每秒7.78公里的速度,这当然就可以省力多了。

运载火箭作为航天器的运载工具,其根本动力就是来源于火箭发动机。它将能源转化为工作介质的动能,形成高速射流排出而产生推力。按使用的能源分类,通常分为化学火箭发动机、核火箭发动机、电火箭发动机和光子火箭发动机。

所谓“化学火箭发动机”,就是指其推进剂是化学材料,既是能源又是工作介质,它在燃烧室内进行放热反应,将化学能转化为热能,生成高温燃气,再将热能转化为高速气流动能,产生推力。按推进剂的物态分为液体火箭发动机、固体火箭发动机和混合火箭发动机。

所谓“核火箭发动机”,就是指其使用燃料能源,用氢作工作介质,经核反应或反射性衰变释放热能加热工作介质,经喷管高速排出,产生推力。

所谓“电火箭发动机”就是指电作能源,使用氢、氮、氩或铯、汞、铷、锂等碱金属蒸气作工作介质,用电能加速工作介质,形成高速射流排出,产生推力。

科学家们还设想,将来可用一种“光子火箭”发动机,所谓“光子火箭”发动机就是使光子流以光的速度从火箭喷管排出,火箭就可以接近光速的速度飞行。但是,目前如何产生光子流仍未研究出来,要产生光子流就必须研制出比现代核反应发动机效率更高的核反应装置,同时还要解决光子流定向喷射问题。因此,这将是21世纪科学家的任务了。

2.营造太空载体的航天器技术

人类要奔向宇宙空间,在那里长期活动,必须有一套相适应的活动“基地”。这个“基地”的大小,主要根据人们的需要和特殊要求,用以满足太空活动时的“船”或“车”,这就是经过专门设计的航天器。这是征服宇宙的必要条件和惟一工具,在现代航天技术领域中居于重要地位。没有航天器,就没有航天事业可言,航天器在发展科学技术,开发空间经济,增强综合国力和加强军事实力中发挥着越来越大的作用,对于一个国家的生存发展、抢占战略制高点,具有难以估量的重大战略意义。因此,不断研究发展航天器技术,已成为各国的重点科研项目和竭力追求的战略目标。

从20世纪50年代后期至今的40年来,世界航天器技术由创立到发展,出现了根本性的变化。品种越来越多、用途越来越广、面貌越来越新、质量越来越高。

航天器,按运行轨道分为两大类。第一类是环绕地球运行的航天器,包括人造地球卫星、卫星式载人飞船、航天站、航天飞机等;第二类是完全脱离地球引力飞往月球或其他行星,以至星际间空间运行的航天器,一般称为登月飞船、空间探测器等。航天器又分为载人和无人两类。载人飞船一般能在空间作短暂飞行,然后可自行返回地面。而载人航天站则可容纳多人在里面生活和工作,且可在轨道上长期送行。载人航天器中能集运载、航行和返回于一身的是航天飞机。航天器在轨道上或空间航行,能在超高空、强辐射、持续失重和温度剧烈变化的特殊环境中活动,是因为航天器中装备着一整套操纵、控制、能源、通信、计算、返回和生命保障系统,并可根据不同的任务装备专用系统。世界航天器技术正向更加严密、科学、实用、可靠的方向,以更快的速度迅速发展着。

航天器的运行原理是什么呢?航天器和自然天体一样,都要按一定的力学定律运行。人类无力改变自然天体的运行轨迹;而人造航天器则可根据发射目的,人们可以利用航天器上的动力系统和控制系统不断改变其航行轨迹。这主要由以下技术参数决定:

(1)速度与高度

航天器在获得一定速度时(一般要达到第一宇宙速度以下),并达到一定高度(离地面125公里以上)时,开始进入“近地轨道区”绕地球做匀速运动,此时的“轨道”有两种几何形式,一种是圆形轨道,即以地球为中心,航天器的飞行轨迹高度基本不变,是个均值。此时的速度要保持在每秒7.9公里。另一种是椭圆形轨道,即当航天器运行速度大于第一宇宙速度而又小于第二宇宙速度时,就会出现椭圆形轨道。这时,地球处于椭圆的一个焦点上,航天器围绕地球旋转时,它们之间的距离是个变量,离地球最近的一点称“近地点高度”,离地球最远的一点称“远地点高度”。在绕地轨道上运行的航天器,其运行寿命和用途与轨道高度有直接关系。高度高,航天器的空间运行寿命就长些,反之,则寿命短些。如用于照相侦察,则不宜飞得太高,而如用于通信、转播、传输信息,则可运行在高度很高的“定点同步静止轨道”(即:在35786公里高度上作正圆形绕地球轨道飞行,其运行速度和地球自转速度一样。因此好像是静止定点地“挂在地球某地上空,故称之)。因此,航天器的高度和速度要根据实际来选择。

至于飞出地球运转轨道,已等于或大于第二宇宙速度时的航天器,其高度和速度对轨道的影响,则不是圆与非圆的问题,而是另一种空间轨道的问题了。

(2)运行周期

通常这是专指航天器绕地球运行一圈的时间,其周期长短与轨道高度有关,轨道高,绕圈大,运行时间就长;反之,则短。但周期也不能太短,最短也不能少于84分钟,因为再短就说明轨道高度离地面太近了,低于125公里时,就会使航天器受到微薄空气的阻力而慢慢下降高度,最后掉回地球上来。掌握了航天器运行轨道和运行周期,就可以计算出该航天器经过某地上空的时间和观察视场。

(3)轨道倾角

这是指航天器运行轨道平面与地球赤道平面的夹角。轨道倾角的大小,决定航天器对地球表面覆盖区的大小。倾角越大,覆盖区越大;反之,则越小。航天器的运行轨道分为三种:一是“赤道轨道”,即航天器轨道平面与赤道平面重合,倾角为零,航天器始终在赤道上空绕地飞行;二是“极地轨道”,即航天器轨道平面与赤道平面垂直,倾角为90度,航天器始终飞越地球南北两极;三是“倾斜轨道”,即航天器轨道平面与赤道平面夹角既不为零,也不为90度,而是航天器在这0~90度之间的某一倾角飞行。

航天器运行轨道倾角不同,主要是根据该航天器的功用需要而确定。航天器由地面发射时,倾角越大,所需运载火箭的推力也要相应大些,这是由于航天器上升入轨过程中,能“借用”地球自转的转动惯量大小不同而形成的结果。

(4)常用轨道

根据各种航天器的用途不同,各自选择运行轨道也不同,其中有三种轨道最受欢迎。

一是“地球同步轨道”,又称“静止轨道”。这是“赤道轨道”的一种,属圆形轨道,高度为35786公里,运行周期为23小时56分4秒,与地球自转一周的时间完全相同。航天器在此轨道上处于与地球相对静止状态。这是一条地面跟踪简单,能24小时连续工作,适用于通信、广播电视、气象侦察和军事预警等人造卫星的理想轨道,因此,它成为各国争相使用的一条“空中林荫大道”,纷纷向此大道上发射卫星,大有川流不息,不堪拥挤之感。为防止发生互相碰撞而引起国际纠纷,国际卫星组织机构(有122个国家都参加的)规定,凡向此轨道发射通信卫星,必须事先登记,取得许可证。

二是“极地轨道”,其突出特点是航天器轨迹可覆盖全球,航天器在此轨道上可飞越地球上任何地区,是导航、资源勘察、气象探测等类卫星的常用轨道。

三是“太阳同步轨道”,是“倾斜轨道”的一种,是指航天器运行轨道平面绕地轴的旋转方向和周期,与地球绕太阳的公转方向和周期相同。其突出特点是航天器运行轨道平面与太阳照射方向始终不变。因此,当航天器沿此轨道运行,每次通过同一纬度的地面目标上空时,能保持对同一地方、在同一运行方向上,具有相同的光照条件,这对于空中对比观测,合理部署和充分利用航天器上太阳能电池阵列都有独特优点。一些国家的近地军事侦察卫星、地球资源勘探卫星和军事气象卫星大多数都采用这条轨道。

(5)经济可靠的应变行程

航天器在空间运行过程中的运行轨道,是可以改变的,也就是航天器利用自身携带的推进剂启动自动的动力装置和航天器姿态控制装置改变自身的运行轨道,可以加速,也可掣动减速,还可改变运行方向和姿态角度。改变其运行轨道,这在航天技术的术语中称作“轨道机动”,或称“轨道转移”。

通常,航天器的轨道机动包括改变轨道平面和轨道形状两种情况。即:使航天器轨道平面从一个位置转移到一个新的轨道平面位置继续运行;航天器轨道形状从某一圆度改变为新的圆度。这两种转移可单独进行,也可同步进行。

为了节省航天器在“轨道机动”过程中耗费的能量,70年代以后,人们大量使用“引力跳板技术”。因为这种技术会大大节省航天器探测路程的飞行时间。所以行星际间的航天器轨道机动,除利用自身动力系统外,现在主要“借用”天体自身的引力来改变航天器运行轨道,即所谓“借力机动技术”或称“引力跳板技术”,形成“跳板式轨道”,则是更为重要的太阳系内行星际间航天活动的技术手段了。

3.推上太空的发射与测控技术

航天器依靠运载器的推动发射上天,在空间航行也需人在地面监测和控制。因此,航天发射场地面监控网及其主要技术装备,是现代航天技术中三大支柱之一,是航天系统工程中重要组成部分,是发射和控制运载器与航天器必备的重要条件。

近30多年来,世界航天事业中,航天发射和地面监控技术同运载器技术和航天器技术齐头并进,相辅相成,取得了突飞猛进的发展,保障和促进了整个航天技术的发展。

(1)航天发射场

所谓“发射场”,就是把航天器发射上天的场地。这是运载火箭进入茫茫宇宙之前在地面的最后一个停靠站。它是发射航天器的特定区域,主要包括发射区、测试区、指挥控制中心、综合测试设备(计算中心、航路测控站和测量船)、勤务保障设施(生产液氢、液氧、氮等工厂、各种辅助仓库、通信、气象、水电供应、计量等部分),以及各种行政后勤保障部门等。场区的条件要求很严格,它的场址选择、发射手段、地面指挥控制设备、后勤保障设施等,都是经过精心选择、精心筹措,并要确保准确无误、安全可靠的。

在发射场址选择上,一般要具备以下五个基本条件:一是根据本国地理条件和发射航天器的特殊需要,一般要选在纬度较低的地区,尽可能接近赤道,且人烟稀疏的山区、戈壁或海边,以防发生事故;二是要找适宜气候条件,大气温差尽可能小,包括一年四季温差尽可能冬暖夏凉,昼夜温差也不大,且每天日照时数尽可能长些,每年日照天数多些,保持晴空万里,天高云淡;三是发射上天的运载火箭运行的东南方向上有较多的易于布设测探网的地域或海岛;四是尽可能便于运输的地域,交通线尽可能易于开辟;五是尽可能多功能使用,即军用和民用兼容,既可用来发射航天运载火箭,又可进行导弹武器试验。

当然,这五个基本条件同时都具备不容易,但至少要优先保证纬度尽可能低些、气候尽可能好些这两条。

随着航天事业的发展,有条件的国家都在努力建设自己的发射场,或与别国合作建设。据统计,到1990年底,全世界已公开的航天发射场共有17个。

近几十年来,全世界有4200多次的航天器成功发射都是在这些神秘的场区进行的,人类走上探索宇宙的“金桥”就是从这里开始迈出第一步的。近两三年来这些严守秘密的航天器始发站开始逐步揭开一角,为世人所见,大开了眼界。

(2)宇航测控

航天器进入茫茫太空,运转速度快,轨道复杂,航天器在空间航行,必须与地面保持密切的联系,由地面对航天器进行跟踪、遥测、遥控和通信。测控系统由分布在全球各地的台、站、船等组成。这些地面设备具有非常完备、高级的电子设备,是航天技术中的重要组成部分。

第一步,从升空到运行的测控。航天器随运载火箭离开发射台之后,很快进入看不见、摸不着的宇宙太空,要跟踪和测量航天器的飞行路线,掌握其工作状态,预报其运行轨道,以及改变其运行轨道,就只能通过无线电波等手段,同时建立实时的信息联系。

地面测控网要按照航天器的飞行轨道和任务,比如:入轨点、机动变轨段、回收段等,在地面上布置以控制计算中心为核心的多处测控站,在海上布置以测量指挥船为核心的测控船队和岛屿测控点。它的主要任务就是:一要接收记录遥测信息,并向测控计算中心传送;二要在跟踪测轨获得初轨的基础上进行计算,以作出航天器运行轨迹的全球性预报;三要控制计算中心综合并计算各测控站的数据、实时显示航天器的各种工作状态;四要通过地面遥控系统,向航天器及时发出遥控指令,对航天器进行遥控。

为保障长期执行航天测控任务,除少数测控航队可临时机动派遣外,绝大多数测控站是常设的。比如,我国航天测控网的卫星测控中心设在陕西渭南,辐射到全国各地,在各地建立了20多个航天器(当前还是人造地球卫星)观测站,形成了广阔而密集的测控网络。地面测控网规模宏大、系统综合性强,要能对航天器“抓得住、测得准、报得及时、指控得力”,必须建立一个综合控制的统一的测控网。这种“综合测控技术”在60年代后期我国首先采用,取得优异成效,在“计算机录取和交换数据”、“四机联网指令链”和“系统仿真模拟”等应用技术方面,对解决航天器进入太空、返回地面、同步定点问题发挥了突出作用。从80年代中期开始,我国西安卫星测控中心开发出了利用一套测控网,连续8年同时对多颗不同类型的在轨运行的长寿命卫星实施“一网管多星”的独特模式,闯出一条科学、高效、经济的卫星测控管理之路,使这一测控技术达到世界先进水平。

第二步,从绕地到定点的指挥。通信卫星,通常设在地球同步静止轨道上,故也称地球同步卫星或静止卫星。它定点于赤道上空35786公里的轨道上,比测控近地轨道上的航天器要复杂得多。在保证中、低轨道测控网的基础上,必须增加大功率、高灵敏度、超远距离的测控设备,才能适应静止轨道航天器的测探要求。为实现这种超远距的测控任务,通常要采取和解决下述三类措施的问题。

——分散测控系统

这是采用微波跟踪测量设备,加上超短波遥测、遥控等设备组成测控网,而这种分散测控系统的功能系统“各自为政”,互相独立。这种系统单个设备功能全,精度相对高,但协调统一难度大、耗资多,整体效益并不很高。

——微波统一系统

即将多种功能统一在一套设备上,采用微波频段进行协调。由一个天线、一套收发设备组成的微波统一系统,具有跟踪测轨、遥测、遥控、数传的能力,即“四合一系统”。

——同步控制系统

航天器在进入同步轨道静止定点过程中,要经过变轨和轨道调整等多种程序。航天器在进入转移轨道后,测控系统一要测量航天器与运载火箭分离后的卫星轨道参数,二要遥测监视其工作情况和姿态、转速等参数,三要对建立点火姿态及点火控制等进行控制。

当航天器进入准静止轨道后,测控系统一要对其即将越出地面测控站作用范围前测出准静止轨道参数;二要对其进行遥测和遥控,使其建立轨道法向姿态;三要进行轨道调整控制。首先使其向预定轨道位置漂移。当其到达预定位置后,进行轨道调整。当进入同步定点轨道时,使其停止漂移,并使其运行周期与地球自动周期相近(约差4分钟)。

当航天器进入静止轨道定点正常运行时,测控系统转入常规测控,一要定期测轨,及时调整其偏离值;二要测量其工作状态;三要对其姿态及转速进行测量和调整;四要对消旋定向天线对地定向的情况进行测量。

为了保证这些测控任务的完成,要派出远测量船队,对超出国土以外的航天器运行过程进行测控。

有的地球静止卫星采取自旋姿态稳定办法对其轨行修正和姿态修正时,要使卫星上的小发动机的喷气与卫星自旋同步。这种“同步控制”可有几种方式。比较先进的是采用“星地间测控大回路的”的同步控制,即由遥测测出卫星自旋的周期和瞬时相位以及其他姿态参数,由遥控系统发出遥控指令,使卫星小发动机的喷气脉冲正好在卫星自旋到相应的相位上。这对测控回路的传输及调制、解调方式的要求十分严格。只有这样,才能保证同步控制的时间精度达到小于1毫秒。

因此,确保航天器到达地球同步轨道,不仅要有一大批测控台、站、船队的相互配合、协同行动,而且要有大量计算机、通信设备来予以保证。通常要有一个拥有多台计算机的测控中心、两个精度高、作用距离远的微波统一系统和三艘远洋测量船。此外,还要有设置在广大国土地面上的雷达站、遥测站、光学跟踪站等众多的台站协同动作,各司其职,同步行动。

第三步,从脱轨到返回的召唤。要使航天器发射上天,固然很不容易;但要使其在茫茫太空运行中,按人的意志返回地面指定地点(或海面溅落),同样相当困难。截止到1992年,世界上也才只有三个国家具有航天器回收技术能力,我们中国就是其中之一。

对返回式航天器的测控,不仅对航天器本身要有特殊的要求,比如接收测控指令的灵敏度、制动姿态转变的控制系统,以及再入大气层时的能够忍耐1000℃以上的高温防护措施和软着陆或溅落装置;在载人航天器上还要有人工紧急操纵系统和救生逃逸系统等,这些都大大不同于非回收式航天器的技术要求,而且对地面测控系统技术也提出了更高的特殊要求。它不但要能进行发射、升空、运动等轨迹跟踪测控,而且要能对其脱轨、再入、回收等准确无误地进行测控。

返回式航天器测控网负有重要的历史使命。其主要任务:一是对航天器进行跟踪观测,取得数据;二是进行数据处理,计算初轨并对初轨进行修正,计算精轨,选择回收圈,预报发出回收调姿、分离指令的时间和粗略落点;三是接收和处理遥测数据,并对其中重要参数实时处理;四是对航天器发出遥控指令,以控制航天器上对应的设备及时进行开(关)机,同时还要校准航天器上的计时装置;五是根据轨道寿命和遥测参数,作出判断是否需要紧急回收的决定;六是在航天器回收段,要完成再入控制、跟踪、观测,再入弹道计算、安全判断和安全控制等任务。

综上所述,我们可以看到,从航天器发射升空、地球静止轨道同步定点,到返回式航天器返回成功,都与地面测控系统技术的不断提高有着密切关系。