为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16…等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(18-2=16)。
规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?
原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。
通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。
规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法?
分析:1、3、7均为奇数,由于目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对于火柴数的奇或偶,也是无法依照己意来控制的。因为(偶-奇=奇,奇-奇=偶),所以每次取后,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。
通则:开局是奇数,先取者必胜,反之,若开局为偶数,则先取者会输。
规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。
分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。
通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。
35韩信点兵
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余8人……刘邦茫然而不知其数。
我们先考虑下列的问题;假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?
首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
中国有一本数学古书《孙子算经》也有类似的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”
答曰:“二十三”
术曰:“三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。”
孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理在近代抽象代数学中占有一席非常重要的地位。
36数学悖论趣谈
悖论是逻辑学的术语,原本是指那些会导致逻辑矛盾的命题或论述。比如大家熟知的《韩非子·难一》中记载的那位卖矛又卖盾的楚国人,声称他的矛锋利无比,什么样的盾都能刺穿,而他的盾坚韧异常,什么样的矛都刺不穿,人问:“以子之矛,陷子之盾,何如?”楚人无言以对。这里关于矛和盾的论述就是一个悖论。悖论这个词在实际使用中,其涵义已被扩大化,常常包括与人的直觉、经验或客观事实相违背的种种问题或论述。因此有时也被称为“佯谬”、“怪论”等。
悖论虽然看似荒诞,但却在数学哲学史上产生过重要影响。一些着名的悖论曾使高明的哲学家与数学家为之震惊,为之绞尽脑汁,并引发了人们长期艰难而深入的思考。可以说,悖论的研究对促进数学思想的深化发展是立过汗马功劳的。
世界上有记载的最早的悖论,是公元前五世纪希腊哲学家芝诺提出的关于运动的着名悖论。在我国公元前三世纪的《庄子·天下篇》中,也记载了几条着名的悖论辨题。这些悖论的提出和解决都与数学有关。在数学史上震撼最大的悖论是英国哲学家罗索于1902年提出的“集合论悖论”,它几乎动摇了整个数学大厦的基础,引发了所谓的“第三次数学危机”。这些严肃的论题在许多数学方法论着作、数学史书籍以及有关的读物中都有记载和讨论。
本文只想谈点轻松的话题。其实,许多数学悖论是饶有趣味的,它不仅可以令你大开眼界,还可以从中享受到无尽的乐趣。面对形形色色富于思考性、趣味性、迷惑性的问题,你必须作一点智力准备,否则可能就会在这悖论迷宫中转不出来了。看看下面的几个小故事,你就会相信此话不假。
第一个故事发生在一位调查员身上。这位调查员受托去A、B、C三所中学调查学生订阅《中学生数学》的情况,他很快统计出,A校男生订阅的比例比女生订阅的比例要大些,对B校和C校的调查也得出同样的结果。于是他拟写了一个简要报道,称由抽取的三所学校的调查数据看,中学生中男生订阅《中学生数学》的比例比女生大。后来,他又把三所学校的学生合起来作了一遍统计复核,匪夷所思的事情发生了,这时他得出的统计结果令他大吃一惊,原来订阅《中学生数学》的所有学生中,女生的比例比男生要大些,怎么会是这样呢?这就象在玩一个魔术,少的变多了,多的变少了。你能帮他找找原因吗?
接下来的这个悖论似乎更简单了。有人把它归入数学中对策论的研究范畴。
一位美国数学家来到一个赌场,随便叫住两个赌客,要教给他们一种既简单又挣钱的赌法。方法是,两个人把身上的钱都掏出采,数一数,谁的钱少就可以赢得钱多的人的全部钱。赌徒甲想,如果我身上的钱比对方多,我就会输掉这些钱,但是,如果对方的钱比我多,我就会赢得多于我带的钱数的钱,所以我赢的肯定要比输的多。而我俩带的钱谁多谁少是随机的,可能性是一半对一半,因此这种赌法对我有利,值得一试。赌徒乙的想法与甲不谋而合。于是两个人都愉快地接受了这位数学家的建议。看来这真是一种生财有道的赌博。
现在的问题是,一场赌博怎么会对双方都有利呢?这象不象一场机会均等的猜硬币正反面的游戏,输了只付1元,而赢了则收2元呢?据说这是个一直让数学家和逻辑学家头疼的问题。《科学美国人》杂志社一直在征求这个问题的答案呢。其实只要认真分析一下,对这个问题也不难给出有说服力的解释。
让我们再来看一个逻辑学的悖论吧。一位数学教授告诉学生,考试将在下周内某一天进行,具体在星期几呢?只有到了考试那天才知道,这是预先料不到的。学生们都有较强的逻辑推理能力,他们想,按教授的说法,不会是星期五考试,因为如果到了星期四还没有考试,那教授说的“只有到了考试那天才知道,这是预先料不到的”这句话就是错的。因此星期五考试可以排除。那就只可能在星期一到星期四考。既然这样,星期四也不可能考,因为到了星期三还没有考试的话,就只能是星期四了,这样的话,也不会是预料不到的。因此星期四考也被排除了。可以用同样的理由推出星期三、星期二、星期一都不可能考试。学生们推出结论后都很高兴,教授的话已经导出矛盾了,轻轻松松地过吧。结果到了下周的星期二,教授宣布考试,学生们都愣住了,怎么严格的推理失效了呢?教授确实兑现了自己说的话,谁也没有能预料到考试的时间。现在请你想一想,学生们的推理究竟错在哪里呢?
关于运动的悖论有很悠久的历史,这里介绍的“蚂蚁与橡皮绳悖论”是一道让你的直觉经受考验的数学趣题。问题是这样的:一只蚂蚁沿着一条长100米的橡皮绳以每秒1厘米的匀速由一端向另一端爬行。每过1秒钟,橡皮绳就拉长100米,比如10秒后,橡皮绳就伸长为1000米了。当然,这个问题是纯数学化的,既假定橡皮绳可任意拉长,并且拉伸是均匀的。
蚂蚁也会不知疲倦地一直往前爬,在绳子均匀拉长时,蚂蚁的位置理所当然地相应均匀向前挪动。现在要问,如此下去,蚂蚁能否最终爬到橡皮绳的另一端?
也许你会认为,蚂蚁爬行的那点可怜的路程远远赶不上橡皮绳成万倍的不断拉长,只怕是离终点越来越远吧!但是千真万确,蚂蚁爬到了终点,奇怪吗?
37放大镜不能把“角”放大
我们看到老人家看报、读书,往往戴上老花眼镜,或者拿上一面放大镜。因为老花眼镜片和放大镜片都能把文字或图画放大,所以老人家用它。
放大镜的确可以把任何东西放大几倍、十几倍甚至几十倍。如果要放大几百、几千倍,甚至几万、几十万、几百万倍,还可以用光学显微镜或者电子显微镜。
可是,有一件东西却无论如何也放大不了。你猜,这是什么东西呢?这就是几何学里面所用到的“角”。“角”的实用价值很大,测量和设计机器都要用到它。“角”是由一点所引两条射线组成的。譬如AOB,就是由两条射线OA和OB组成的。“角”的大小,是指同一点所引两条射线张开的程度。我们已经知道,一个角的大小是用几度、几分、几秒来表示的。
例如,有一个“角”是30°,在放大镜下面看起来,它还是30°。虽然放大镜使画面上的线条变粗、字母变大了,可是,这个角张开的程度,还是没有改变。
为什么呢?
第一,因为经过放大以后,这两条射线的位置,仍旧不变。OB占有水平的位置,放大后仍旧占着水平的位置;OA原来是这么斜着的,放大后它还是这么斜着。所以,张开的程度不变。再则,放大镜只能把东西的各部分成比例地放大,而形状不变。在数学上,原来的图形与放大后的图形,称为“相似形”。相似形的对应角是相等的。因此,放大镜下的AOB,与画面上的AOB,在大小上是相等的,并没有被放大。
最明显不过的例子,就是桌子或者书本的四角,不管怎么放大,它们的四个角仍旧都是直角。因此可以说,随便多少度数的角,“放大”以后度数是不改变的;也就是说,图形是放大了,但“角”是不会被放大镜放大的。
38庄家为什么会赢
所谓“机会型”赌博,就是说胜败完全靠碰运气,它最容易引诱青少年上当。因为表面上看来机会均等,甚至有利于参加者,事实上,几乎所有的“机会型”赌博,机会都不是均等的,总是有利于庄家的。这究竟是为什么呢?
我们来看一种在国外颇为盛行的赌博——“碰运气游戏”。它的规则如下:每个参加者每次先付赌金1元,然后将三个骰子一起掷出。他可以赌某一个点数,譬如赌“1”点。如果三枚骰子中出现一个“1”点,庄家除把赌金1元发还外,再奖1元;如果出现两个“1”点,发还赌金外,再奖2元;如果全是“1”点,那么发还赌金,再奖3元。
看起来,一枚骰子赌“1”点,取胜的可能性是1/6;那么两枚骰子就有1/3的可能性,三枚也就有1/2的可能性。即使是1元对1元的奖励,机会也是均等的,何况还可能有2倍、3倍奖励的可能性,自然是对参加者有利。其实,这只是一个假象。
我们来计算一下,三枚骰子一起掷,会出现怎样的情况?第一枚有6种可能,而对于它的每一种结果,第二枚又有6种可能,第三枚也是如此,所以一共有6×6×6=216种可能结果。在这216种可能结果中,三枚点数各不相同的可能就是6×5×4=120种。三枚点数完全相同的可能只有6种,即都是“1”、“2”……“6”。余下的216-120-6=90种可能,就是三枚中有两枚点数相同的情况。
一个参加者,假设他总是赌“1”点,如果赌了216次,那么他能有几次获奖呢?先来看只有一枚出现“1”点的情况:出现“1”点的骰子可能是第一枚,也可能是第二或第三枚,共有三种可能,而其余两枚不出现“1”点的可能性有5×5=25种,所以共有3×25=75种可能。这75种可能出现时,他可获2元,那么总共可获75×2=150元。再来看出现两枚“1”点的可能性:可以出现在第一和第二枚,也可以是第一和第三枚,还可以是第二和第三枚,也是三种可能;而另一枚骰子不出现“1”点只有5种可能,所以共有15种可能。这时,每次他可获3元,共45元。最后,三枚都出现“1”点的只有一种可能,这时,他可获4元。
这样,216次,他共获150+45+4=199元。但每次先付1元,他共付了216元。所以,一般来说,他会输216-199=17元。
我们再来看看庄家的情况。假设有6人参加赌博,每人分别赌“1”、“2”……“6”点,并且假定进行了216次。庄家每次收进了6元赌金,216次共收了6×216=1296元。那么他会付出多少呢?
从前面的分析中我们已经知道,在216次中有120次结果是三枚骰子点数各不相同的。譬如,出现了“1”、“2”、“3”,于是赌“4”、“5”、“6”点的三位参加者就输了。庄家要付给赢的三家每人2元,共6元,120次,共计6×120=720元。另外有90次是有两枚骰子点数相同的,譬如“1”、“1”、“2”,那么,赌“3”、“4”、“5”、“6”点的就输了,赌“2”点的可得2元,赌“1”点的可得3元,庄家每次付出5元,90次共计5×90=450元。最后,还有6次是三枚骰子点数完全相同的,譬如都是“1”,这时,只有赌“1”点的赢,可得4元,6次,共24元。
所以,庄家一共付出720+450+24=1194元。于是庄家净赚1296-1194=102元,占总金额的79%。
现在,你明白了吗?赌博是没有好处的,千万不要参加赌博。
39同学的生日
你有没有发现,在同班同学中,几乎总是有生日相同的。不信,你可以去统计一下。但是,你能说出为什么吗?一个班级不过40~50人,而一年有365天,生日怎么会“碰”在一起呢?